Сторожевые устройства и охранная сигнализация

         

ЭЛЕКТРОПИТАНИЕ УСТРОЙСТВ ОХРАНЫ И СИГНАЛИЗАЦИИ


5. ЭЛЕКТРОПИТАНИЕ УСТРОЙСТВ ОХРАНЫ И СИГНАЛИЗАЦИИ

Электронные, электрические и электронно-механические изделия и устройства, составляющие большую и особую группу, к которым относятся УОС, должны отвечать определенным и строго установленным требованиям по питающему напряжению, действующей частоте переменного тока, стабилизированному току и другим параметрам. Учитывая многообразие УОС и различные условия эксплуатации, к электропитанию предъявляются повышенные требования, которые должны отвечать установленным требованиям государственных стандартов.

Для электропитания УОС в большинстве случаев применяются первичные и вторичные источники. В качестве источников первичного электропитания для УОС используются сети переменного тока напряжением 200 В частотой 50 Гц и чрезвычайно редко — напряжением 127 В. Также в качестве первичных источников применяются ХИТ: одноразовые автономные гальванические элементы типа 373, 343, 316, А373 и другие, батареи и аккумуляторы различных систем, преобразователи внутренней химической или биологической энергии вещества в электричество, термо- и фотоэлектрические преобразователи энергии, акустические, топливные, атомные и другие типы преобразователей.

В качестве вторичных источников электропитания УОС используются узлы и БП, которые работают, как правило, от первичных сетей и подключаются к ним, преобразуя их переменное или постоянное напряжение в ряд выходных напряжений различных номиналов как постоянного, так и переменного тока.

В настоящее время выпускается большое количество самых разных типов и видов первичных и вторичных источников питания, которые могут быть использованы для электропитания УОС.

Как известно, к первичным сетям электропитания относятся системы и сети, объединенные общим процессом генерирования и (или) преобразования, передачи и распределения электрической энергии и состоящие из источников и (или) преобразователей электрической энергии, электрических сетей распределительных устройств, а также устройств, обеспечивающих поддержание ее параметров в заданных пределах.
Постоянное или переменное напряжение, действующее на входе электронных устройств, определяется как номинальное напряжение питания УОС. Номинальные значения и допускаемые отклонения постоянных и переменных напряжений питания для установленных частот определены параметрическими рядами, которые распространяются как на системы электроснабжения, сети, источники, преобразователи, так и непосредственно на присоединяемые к ним приемники электрической энергии. Номинальные напряжения систем электроснабжения, источников, преобразователей, сетей и приемников приведены в табл. 1. 9. В качестве приемников электроэнергии в данном случае выступают УОС. Таблица 1. 9. Номинальные значения напряжений питающей сети, преобразователей и приемников электрической энергии


Параметрические ряды номинальных значений токов, используемых в источниках и приемниках электрической энергии, в том числе в УОС, указаны в табл. 1. 10. Параметрические ряды номинальных частот и их допускаемые отклонения для систем электроснабжения, приемников и преобразователей электрической энергии в случае использования нетрадиционных источников переменного тока приведены в табл. 1. 11. Таблица 1. 10. Параметрические ряды номинальных значений токов, используемых в приемниках электрической энергии
Таблица 1.11. Параметрические ряды номинальных частот и их допускаемые отклонения

Важным моментом при выборе конкретных значений номинальных напряжения и тока для УОС является правильная оценка их принципиальных электрических схем, а также схем электрооборудования ИМ и технологических процессов; цепи, замкнутые внутри изделий, в которых токи питания и напряжения определяются схемными и инженерно-техническими решениями и не вписываются в параметрические ряды, указанные в табл. 1. 10—1. 12. К ним относятся принципиальные схемы УОС с переходными процессами, токи которых определяются суммарными токами приемников электрической энергии, и их значения не могут быть обеспечены данными, приведенными в табл. 1. 10. и 1. 11. Это же положение относится к электрическим цепям, замкнутым внутри электронных схем ИМ, электрических машин, аппаратов и подобных им изделий и устройств; элементам тепловых реле; цепям приемопередающей, Сигнальной-вызывной аппаратуры, цепям измерения и контроля, сигнализации и управления; катушкам обмоток электрических аппаратов.


Для УОС, а также других приемников электрической энергии, для которых предусмотрено несколько режимов работы, номинальные токи, указанные в табл. 1. 11, относятся к нормальному и установившемуся режимам работы, для остальных режимов работы эти токи являются рекомендуемыми. Из перечисленных в табл. 1. 11 номинальных значений токов предпочтительными являются следующие: 1; 1,6;2,5;4;6,3А, а также десятинные и дольные значения этих токов. При конструировании или применении готовых устройств электропитания для ЭУОС, отличающихся от рассматриваемых в настоящем справочнике, номинальные напряжения выбираются в основном из табл. 1. 12. В некоторых случаях, обусловленных требованиями эксплуатации УОС, используются номинальные напряжения, отличные от указанных в Табл. 1. 12. Предпочтительными номинальными напряжениями постоянного тока считаются напряжения 36 или 60 В. На входе УОС в жилых помещениях применяются однофазные переменные и фазовые напряжения трехфазного тока. Номинальное значение переменного напряжения равно 220 В. Рабочее напряжение при питании УОС от электросети общего назначения может изменяться в очень широких пределах, особенно в сельской местности,—от 150 до 280 В, а при питании радиоэлектронных изделий и электротехнической аппаратуры от электросети общего назначения через устройства регулирования — от 200 до 235 В. Номинальное значение частоты питающей сети переменного тока, которое применяется в нашей стране, равно 50 Гц, а в США — 60 Гц. Изменения частоты питающей сети, при которых аппаратура и электронные изделия работают достаточно устойчиво, находятся в пределах от 49 до 51 Гц. Коэффициент нелинейных искажений питающей сети переменного тока лежит в пределах от 10 до 12%. Таблица 1. 12 Параметрические ряды номинальных напряжений для питания электронных кодовых замков и УОС


КЛАССИФИКАЦИЯ ЭЛЕКТРОННЫХ УСТРОЙСТВ ОХРАНЫ И СИГНАЛИЗАЦИИ


2. КЛАССИФИКАЦИЯ ЭЛЕКТРОННЫХ УСТРОЙСТВ ОХРАНЫ И СИГНАЛИЗАЦИИ

Все рассматриваемые в этом справочнике электронные устройства бытового и общепромышленного применения могут быть классифицированы по многочисленным признакам: функциональному назначению; конструктив ному исполнению; технологии изготовления; условиям применения и эксплуатации, учитывающим устойчивую работу при воздействии внешних факторов; виду входной электроэнергии; конструктивно-технологическим признакам; схемотехническим решениям; количеству охраняемых объектов; способам защиты; факторам электромагнитной защищенности; технико-экономическим признакам и др Рассмотрим некоторые из них.

Функциональное назначение. Классификация ЭУОС по данному признаку предусматривает достаточно жесткое распределение этих изделий по выполняемым ими функциям. Иногда в одном устройстве сочетаются различные функции, которые определяются при конструировании в ТЗ и зависят от назначения и области применения изделия. Согласно этому признаку ЭУОС подразделяются на сигнальные, оповещающие, охранные, отключающие, запирающие и др. Характеристика всех функциональных признаков рассматриваемых устройств подробно раскрывается при описании конкретных изделии этого типа.

Конструктивное исполнение. Этот классификационный признак является для многих ЭУОС наиболее существенным при определении технических возможностей начинающего радиолюбителя, оборудовании мастерских и лабораторий необходимой измерительной аппаратурой и средствами технологического оснащения. В основе классификации но этому признаку лежит конструкция изделия, его конфигурация, внешнее оформление, эргономические и эстетические показатели, которые определяются областью применения конкретного устройства и местом расположения на охраняемом объекте. Очень часто при конструировании УОС приходится учитывать особенности охраняемых объектов, их геометрические размеры, объем и форму, и даже их статические и динамические характеристики, если речь идет о средствах передвижения или стационарных объектах.

Классифицируются УОС по конструктивному исполнению на встраиваемые, автономные в виде самостоятельных сборочных единиц и комбинированные.
Электронная часть УОС, как правило, собирается в отдельных пластмассовых или металлических корпусах с электрическим монтажом комплектующих ЭРЭ на печатных платах. Печатные платы выполняются из фольгированного стеклотекстолита или гетинакса толщиной 1, 5... 2 мм. Необходимо заметить, что в данном справочнике при описании УОС не даются прямые указания по их конструктивному исполнению, то есть предоставляется достаточная самостоятельность для разработки конкретных конструкций. Но во всех случаях радиолюбители должны сначала осуществить эскизную проработку, а затем выполнить конструкторскую разработку УОС с оформлением чертежей деталей и сборочных единиц. Такая проработка должна осуществляться в соответствии с требованиями стандартов государственной системы ЕСКД. Тенденции развития электронной техники и электротехники на базе микроминиатюризации требуют применения широкой номенклатуры маломощных и малогабаритных устройств и изделий (преобразователей, трансформаторов, усилителей, фильтров, стабилизаторов, выпрямителей и т. д.), выполненных на новой конструктивной основе ЭРЭ. Достижения науки и техники на современном этапе развития в области электронной техники позволяют значительно уменьшить массогабаритные характеристики рассматриваемых электронных устройств. В настоящее время конструирование РЭА, РЭУ и ЭРЭ характеризуется резким увеличением применения БИС, что также дает возможность уменьшить объемы устройств и одновременно улучшить их качественные характеристики, показатели надежности и долговечности. Технология изготовления. Классификация ЭУОС по данному признаку определяет вес основные и заключительные операции изготовления изделий и является главной при оценке их трудоемкости и стоимости. В условиях радиолюбительских лабораторий и домашних мастерских, которые оснащены, как правило, несложным технологическим оборудованием, наиболее простой операцией изготовления УОС является традиционное ручное производство деталей и сборочных единиц, из которых впоследствии выполняются узлы, блоки и самостоятельные сборки.


Это позволяет условно классифицировать данные устройства по технологическим признакам на простые, средней сложности и сложные. К простым технологическим изделиям относятся такие, в которых конструкция и схема ЭУОС содержат набор деталей и ЭРЭ из резисторов, конденсаторов, электромеханических реле и ППП малой мощности с общим количеством, не превышающим 10 единиц. При этом сборка и монтаж устройств осуществляются преимущественно с помощью объемного навесного монтажа и винтовых соединений. Электронные УОС средней технологической сложности включают в свой состав кроме указанных комплектующих ЭРЭ транзисторы малой и средней мощности, тиристоры, герконы, индикаторы, ППП и другие, электрический монтаж которых осуществляется преимущественно с помощью печатного монтажа. Общее количество деталей и комплектующих ЭРЭ в устройствах средней технологической сложности может превысить 50 единиц. Если электропитание простых устройств осуществляется от встроенных ХИТ, то изделия средней технологической сложности получают его от вторичных источников, имеющих в своем составе преобразователи энергии, выпрямительные устройства и стабилизаторы напряжения параметрического или компенсационного типов, работающие от сети переменного тока напряжением 220 В, частотой 50 Гц. Сложные изделия и устройства включают в свой состав десятки и сотни комплектующих ЭРЭ и механических деталей. Принципиальные электрические схемы этих устройств содержат многообразные ИМС и БИС. С точки зрения технологии изготовления, сложные изделия характеризуются повышенным уровнем трудоемкости и часто могут быть реализованы лишь в условиях хорошо оснащенных домашних мастерских. Следует заметить, что только для распайки выводов ИМС, собранных в стандартных корпусах с 14 или 16 выводами, потребуется изготовить сначала специальные приспособления, а сама пайка выполняется при строго определенных режимах нагрева во времени. Сложные технологические изделия имеют, как правило, комбинированное электропитание: от сети переменного тока и от автономного источника.




В качестве автономных источников электропитания могут выступать различные ХИТ: гальванические элементы и батареи, аккумуляторы разных систем. Структурная схема признаков классификации УОС, построенных на базе электроники, рассмотрена на рис. 1. 2. Структурная схема условного деления электронных систем защиты и сигнализации на функциональные узлы и самостоятельные сборочные единицы приведена на рис. 1. 3. Условия применения и эксплуатации. Классификация электронных устройств данного класса по этому признаку, основные нормы и требования для каждой классификационной группы но климатическим (температуре, повышенной влажности и атмосферному давлению) и механическим (синусоидальной вибрации и механическому удару) воздействиям приведены в табл. 1. 3. и 1. 4. Значения повышенной и пониженной рабочих температур даются при рассмотрении конкретных изделий и, как правило, указываются в ТУ на данное устройство. Рабочую температуру выбирают из следующего параметрического ряда: —40, —35, —30, —25, —22, —20, —18, -15, -10, -5, 0, 5, 10, 15, 18, 20, 22, 25, 27, 30, 40, 45, 50, 55, 70, 85, 100, 125 °С.


Рис.1.2 Структурная схема признаков классификации устройств охраны и сигнализации

Рис. 1.3 Структурная схема условного деления электронных систем защиты и сигнализации Таблица 1.3 Классификация УОС по климатическим воздействиям

Группы исполнения ЭУОС выбирается исходя из условий применения, норм и требований, их конструктивных исполнений, а также достигнутого уровня стойкости в частности механических и климатических воздействий. Устройства, создание которых невозможно или нецелесообразно по требованиям изложенным в табл. 1. 4 и 1. 5, должны разрабатываться по менее жестким требованиям с учетом возможных мер индивидуальной или общей защиты. Рис.12 Структурная схема признаков классификации устройств охраны и сигнализации. Таблица 1.4. Классификация ЭКЗ и УОС по механическим воздействиям


ОСНОВНЫЕ ПОНЯТИЯ И ИХ ОПРЕДЕЛЕНИЯ


Аккумулятор вторичный химический источник тока, состоящий из одного гальванического элемента.

Аккумуляторная батарея — вторичный химический источник тока, состоящий из двух и более аккумуляторов, соединенных между собой электрически для совместного производства электрической энергии.

Активный фильтр — электрический частотный фильтр, содержащий один или несколько усилительных элементов.

Время готовности электронного УОС — интервал времени между моментом подачи входного напряжения и моментом, после которого параметры этих устройств удовлетворяют заданным требованиям.

Гальваническая связь — связь электрических цепей посредством электрического поля в проводящей среде.

Гальванический элемент — химический источник тока, состоящий из одной гальванической ячейки.

Емкость конденсатора — электрическая емкость между электродами конденсатора.

Диэлектрик — вещество, основным электрическим свойством которого является способность поляризоваться в электрическом поле.

Источник вторичного электропитания электронного устройства — средство вторичного электропитания УОС, обеспечивающее вторичным электропитанием самостоятельные функциональные узлы или отдельные цепи этих устройств.

Компенсационный стабилизатор напряжения вторичного электропитания — стабилизатор напряжения вторичного электропитания, в котором стабилизация осуществляется за счет воздействия изменения выходного напряжения на его регулирующее устройство через цепь обратной связи.

Коэффициент трансформации отношение числа витков вторичной обмотки к числу витков первичной или отношение напряжения на вторичной обмотке к напряжению на первичной обмотке в режиме холостого хода без учета падения напряжения на трансформаторе.

Конденсатор — элемент электрической цепи, предназначенный для использования его емкости.

Коэффициент стабилизации напряжения источника вторичного электропитания электронного устройства отношение относительного о изменения входного напряжения электропитания к выходному напряжению, вызванному им относительного изменения выходного напряжения

Вероятность безотказной работы — вероятность того, что в пределах заданной наработки отказ электронного У ОС не возникает.

Временное резервирование — резервирование с применением резервов времени.

Время восстановления работоспособности электронного УОС — продолжительность восстановления работе способного состояния объекта.

Комплексный показатель надежности — показатель надежности, характеризующий несколько свойств, составляющих надежность УОС.

Надежность сторожевого и сигнального устройства свойство изделия выполнять заданные функции, сохраняя свои эксплуатационные показа гели в заданных пределах в течение требуемого промежутка времени или требуемой наработки на отказ.

Напряжение питания — постоянное или переменное напряжение на входе аппаратуры, на которое она должна быть рассчитана.

Напряжение химического источника тока — разность потенциалов между выводами химического источника тока

Наработка — продолжительность или объем работы изделия, измеряемые в часах, километрах, циклах или других единицах.

Наработка на отказ — среднее значение наработки ремонтируемого изделия между отказами.

Необслуживаемый объект (сторожевое и сигнальное устройство) — объект, для которого проведение технических обслуживаний не предусмотрено в НТД или КД.

Начальное напряжение химического источника тока — напряжение химического источника тока в начале разряда, а при прерывистом разряде в начале первого периода разряда.

Номинальное напряжение питания — условное значение напряжения, относительно которого устанавливают допускаемые отклонения.

Номинальное напряжение химического источника тока — напряжение химическою источника тока, указанное изготовителем, характеризующее данный химический источник тока.

Напряженность магнитного поля — векторная величина, равная геометрической разности магнитной индукции, деленной на магнитную постоянную, и намагниченности.

Однофазное электротехническое устройство — электротехническое устройство, предназначенное для включения в однофазную электрическую цепь и не предназначенное для преобразования числа фаз.

Одноканальный источник вторичного электропитания сторожевых и сигнальных устройств — источник вторичного электропитания, имеющий один выход.

Основная приведенная погрешность — отношение погрешности измерительного прибора, используемого в нормальных условиях эксплуатации, к нормирующему значению.

Параметрический стабилизатор напряжения вторичного электропитания сторожевых и сигнальных устройств — стабилизатор напряжения вторичного электропитания, в котором отсутствует цепь обратной связи и стабилизация осуществляется за счет использования нелинейных элементов, входящих в его состав.

Полупроводник — вещество, основным свойством которого является сильная зависимость его электропроводимости от воздействия внешних факторов.

Показатель надежности — количественная характеристика одного или нескольких свойств, составляющих надежность объекта.

Рабочее напряжение питания — напряжение, находящееся в пределах допускаемых отклонений от номинального напряжения, в которых обеспечивается работа УОС в заданных пределах.

Резистор — элемент электрической цепи, предназначенный для использования его электрического сопротивления.

Ремонтируемые сторожевые и сигнальные устройства — изделия, для которых проведение ремонтов предусмотрено в НТД и КД.

Ремонтопригодность свойство объема, заключающееся в приспособленности к предупреждению и обнаружению причин возникновения отказов, повреждений и восстановлению работоспособного состояния путем проведения технического обслуживания и ремонтов.

Отказ — событие (совокупность событий), заключающееся в нарушении работоспособного состояния устройства.

Система вторичного электропитания сторожевых и сигнальных устройств — средство вторичною электропитания этих устройств, обеспечивающее вторичным электропитанием по заданной программе все цепи комплекса.

Срок службы — календарная продолжительность от начала эксплуатации устройства или ее возобновления после ремонта определенного вида до перехода в предельное состояние.

Схема электрической цепи — графическое изображение электрической цепи, содержащее условное обозначение ее элементов и показывающее соединения этих элементов.

Стабилизатор напряжения вторичного электропитания сторожевых и сигнальных устройств — функциональный узел вторичного электропитания устройства, осуществляющий стабилизацию выходного напряжения без изменения рода напряжения (тока).

Ток включения — максимальное мгновенное значение входного тока при включении источника вторичного электропитания.

Функциональный узел сторожевого или сигнального устройства — устройство, входящее в состав схемы и выполняющее одну или несколько задач, обеспечивающих четкую работу всей системы охраны и сигнализации.

Химический источник тока — устройство, в котором химическая реакция заложенных в нем веществ непосредственно преобразуется в электрическую энергию при протекании электрохимических реакций.

Шифр — совокупность условных знаков для хранения и передачи информации в электронных устройствах.

Код — совокупность знаков и система определения правил, при помощи которых информация может быть

представлена (закодирована) в виде набора из таких символов для передачи, обработки и хранения (запоминания).
Конечная последовательность кодовых знаков обозначается чаще всего цифрами и числами (0;1...66, 255 и т. д.). Электрическая цепь — совокупность устройств и объектов образующих пун. для электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий об электродвижущей силе, токе и напряжении. Электрическое напряжение скалярная величина, равная линейному интегралу напряженности и электрического поля. Электрическое соединение — соединение участков электрической цепи, при помощи которого образуется электрическая цепь. Электрическое сопротивление постоянному току — скалярная величина, равная отношению постоянного напряжения на участке пассивной электрической цепи к постоянному току в нем при отсутствии на этом участке ЭДС. Электродвижущая сила — скалярная величина, характеризующая способность стороннего поля и индуктированного электрического поля вызывать электрический ток. Информационное резервирование — резервирование с применением резервов информации.

УСЛОВИЯ ЭКСПЛУАТАЦИИ ЭЛЕКТРОННЫХ УСТРОЙСТВ ОХРАНЫ И СИГНАЛИЗАЦИИ


4. УСЛОВИЯ ЭКСПЛУАТАЦИИ ЭЛЕКТРОННЫХ УСТРОЙСТВ ОХРАНЫ И СИГНАЛИЗАЦИИ

Надежная, безотказная и долговечная эксплуатация ЭУОС обеспечивается многочисленными техническими требованиями, нормированными электрическими параметрами, нормами эксплуатации и их обязательным соблюдением как в ходе изготовления, так и в процессе работы. При создании УОС необходимо учитывать, что они работают, как правило, в жестких условиях температурных нагрузок и большого числа внешних воздействующих факторов. Неправильная оценка или незнание этих факторов, а также использование УОС с отступлением от номинальных режимов эксплуатации являются почти всегда основной причиной многих отказов и повреждении.

Как отмечалось ранее, все изделия электронной техники и электротехники, к которым прямо относятся УОС, а также большинство изделий радиотехники производственно-технического назначения и бытового потребления, изготавливаемых для нужд народного хозяйства страны и для поставки на экспорт, классифицируются по условиям применения, для них установлены нормы и требования по стойкости к внешним воздействующим факторам: механическим, климатическим, биологическим и электромагнитным.

Конструктивно-технологические исполнения УОС для различных климатических районов страны, категории исполнения, условия эксплуатации, хранения и транспортирования для всех видов приборов и других изделий народнохозяйственного, культурно-бытового назначения, хозяйственного обихода и общего назначения установлены государственными, межотраслевыми и отраслевыми стандартами.

Категории размещения сторожевых и сигнальных устройств, их обозначения, принятые в НТД, приводятся в табл. 1. 5.

При конструировании и эксплуатации УОС, являющихся совокупностью функциональных узлов, блоков и сложных комплектующих изделий и представляющих единую конструкцию, необходимо учитывать требования к устойчивости этих устройств при механических, биологических, климатических и электромагнитных воздействиях, а также требования к конструкции и электрическим параметрам.
Производственно- технологические процессы создания новых устройств охраны по заданным или расчетным значениям электрических и конструктивных характеристик, механических и климатических воздействий всегда носят комплексный характер. Только такой подход к созданию и проектированию изделий позволяет принимать правильное решение, обеспечивающее получение желательного результата и оптимального съемно-технического решения. УОС, изготавливаемые как самостоятельные сборочные единицы, создаются для эксплуатации в нескольких макроклиматических районах и всевозможных местах Таблица 1. 5 Категории размещения сторожевых и сигнальных устройств


Окончание табл.1.5
Укрупненные основные категории Дополнительные категории
Обозначение Область применения Обозначение Область применения
овощехранилищ, подземных гаражей, подвалов, при отсутствии прямого воздействия атмосферных осадков. Для работы ЭКЗ и УОС в неотапливаемых и невентилируемых помещениях, в которых возможно длительное наличие воды или частая конденсация влаги на стенах и потолке, в частности в помещениях гидрометаллургических производств тегории 5, где исключается возможность конденсации влаги на комплектующих элементах

размещения. Это диктуется в основном экономической и технической целесообразностью. УОС бытового и общепромышленного назначения, проектируемые и выпускаемые промышленностью по категориям размещения (табл. 1. 6), классифицируют по группам эксплуатации. Некоторые виды этих устройств бытового назначения, изготавливаемые в исполнении УХЛ по категориям размещения и группам эксплуатации, даны в табл. 1. 6. Если изделия и устройства изготавливаются промышленным способом, то обозначения видов климатического исполнения указывают в КД и ТД, а также на этикетке, на которой приводится марка изделия. В последнее время появилось много самодельных УОС, изготавливаемых, как правило, по эскизной документации в неприспособленных мастерских различных малых предприятий, кооперативов и акционерных обществ, которые не учитывают требования внешних воздействующих факторов, и в КД на эти изделия не даются сведения о климатическом исполнении.


В общем виде обозначение видов климатического исполнения охранных устройств должно включать либо сочетание исполнения и категории, отражающее наиболее жесткие условия эксплуатации, либо несколько исполнений и категорий, для которых предназначены эти изделия. Важную роль при эксплуатации УОС и их функциональных узлов играют температура окружающей среды Таблица 1.6 Группы сторожевых и сигнальных устройств

и значение относительной влажности воздуха при этой температуре. Нормальные и предельные рабочие температуры окружающей среды при эксплуатации изделий электронной техники и значения относительной влажности приведены в табл. 1.7. и 1.8. Таблица 1.7. Температура воздуха при эксплуатации сторожевых и сигнальных устройств

Окончание табл. 1. 7

Таблица 1.8. Относительная влажность воздуха при эксплуатации сторожевых и сигнальных устройств.


УСЛОВНЫЕ ГРАФИЧЕСКИЕ И БУКВЕННЫЕ


Почти все УОС, все изделия радиоэлектроники и электротехники, изготавливаемые промышленными организациями и предприятиями, домашними мастерами, юными техниками и радиолюбителями, содержат в своем составе определенное количество разнообразных покупных ЭРИ и элементов, выпускаемых в основном отечественной промышленностью. Но за последнее время наблюдается тенденция применения ЭРЭ и комплектующих изделий зарубежного производства. К ним можно отнести в первую очередь ППП, конденсаторы, резисторы, трансформаторы, дроссели, электрические соединители, аккумуляторы, ХИТ, переключатели, установочные изделия и некоторые другие виды ЭРЭ.

Применяемые покупные комплектующие или самостоятельно изготавливаемые ЭРЭ обязательно находят свое отражение на принципиальных и монтажных электрических схемах устройств, в чертежах и другой ТД, которые выполняются в соответствии с требованиями стандартов ЕСКД.

Особое внимание уделяется принципиальным электрическим схемам, которые определяют не только основные электрические параметры, но и все входящие в устройства элементы и электрические связи между ними. Для понимания и чтения принципиальных электрических схем необходимо тщательно ознакомиться с входящими в них элементами и комплектующими изделиями, точно знать область применения и принцип действия рассматриваемого устройства. Как правило, сведения о применяемых ЭРЭ указываются в справочниках и спецификации — перечне этих элементов.

Связь перечня комплектующих ЭРЭ с их условными графическими обозначениями осуществляется через позиционные обозначения.

Для построения условных графических обозначений ЭРЭ используются стандартизованные геометрические символы, каждый из которых применяют отдельно или в сочетании с другими. При этом смысл каждого геометрического образа в условном обозначении во многих случаях зависит от того, в сочетании с каким другим геометрическим символом он применяется.

Стандартизованные и наиболее часто применяемые условные графические обозначения ЭРЭ в принципиальных электрических схемах приведены на рис. 1. 1.
Эти обозначения касаются всех комплектующих элементов схем, включая ЭРЭ, проводники и соединения между ними. И здесь важнейшее значение приобретает условие правильного обозначения однотипных комплектующих ЭРЭ и изделий. Для этой цели применяются позиционные обозначения, обязательной частью которых является буквенное обозначение вида элемента, типа его конструкции и цифровое обозначение номера ЭРЭ. На схемах используется также дополнительная часть обозначения позиции ЭРЭ, указывающая функцию элемента, в виде буквы. Основные виды буквенных обозначений элементов схем приведены в табл. 1.1. Обозначения на чертежах и схемах элементов общего применения относятся к квалификационным, устанавливающим род тока и напряжения,. вид соединения, способы регулирования, форму импульса, вид модуляции, электрические связи, направление передачи тока, сигнала, потока энергии и др. В настоящее время у населения и в торговой сети находится в эксплуатации значительное количество разнообразных электронных приборов и устройств, радио- и телевизионной аппаратуры, которые изготавливаются зарубежными фирмами и различными акционерными обществами. В магазинах можно приобрести различные типы ЭРИ и ЭРЭ с иностранными обозначениями. В табл. 1. 2 приведены сведения о наиболее часто встречающихся ЭРЭ зарубежных стран с соответствующими обозначениями и их аналоги отечественного производства. Эти сведения впервые публикуются в таком объеме.


Рис 1.1 Условные графические обозначения ЭРЭ в схемах электрических, радиотехнических и автоматизации 1— транзистор структуры р- n-р в корпусе, общее обозначение; 2— транзистор структуры п-р-п в корпусе, общее обозначение, 3 — транзистор полевой с p-n-переходом и п каналом, 4 — транзистор полевой с p-n-переходом и р каналом, 5 — транзистор однопереходный с базой п типа, б1, б2 — выводы базы, э — вывод эмиттера, 6 — фотодиод, 7 — диод выпрямительный, 8 — стабилитрон (диод лавинный выпрямительный) односторонний, 9 — диод тепло-электрический, 10 — тиристор диодный, стираемый в обратном направлении; 11 — стабилитрон (диодолавинный выпрямительный) с двусторонней проводимостью, 12 — тиристор триодный. 13 — фоторезистор, 14 — переменный резистор, реостат, общее обозначение, 15 — переменный резистор, 16 — переменный резистор с отводами, 17 — построечный резистор-потенциометр; 18 — терморезистор с положительным температурным коэффициентом прямого нагрева (подогрева), 19 — варистор, 20 — конденсатор постоянной емкости, общее обозначение, 21 — конденсатор постоянной емкости поляризованный; 22 — конденсатор оксидный поляризованный электролитический, общее обозначение; 23 — резистор постоянный, общее обозначение; 24 — резистор постоянный с номинальной мощностью 0, 05 Вт; 25 — резистор постоянный с номинальной мощностью 0, 125 Вт, 26 — резистор постоянный с номинальной мощностью 0, 25 Вт, 27 — резистор постоянный с номинальной мощностью 0, 5 Вт, 28 — резистор постоянный с номинальной мощностью 1 Вт, 29 — резистор постоянный с номинальной мощностью рассеяния 2 Вт, 30 — резистор постоянный с номинальной мощностью рассеяния 5 Вт; 31 — резистор постоянный с одним симметричным дополнительным отводом; 32 — резистор постоянный с одним несимметричным дополнительным отводом;



Рис 1. 1 Условные графические обозначения ЭРЭ в схемах электрических, радиотехнических и автоматизации 33 — конденсатор оксидный неполяризованный, 34 — конденсатор проходной (дуга обозначает корпус, внешний элекрод), 35 — конденсатор переменной емкости (стрелка обозначает ротор); 36 — конденсатор подстроечный, общее обозначение 37 — варикап. 38 — конденсатор помехоподавляющий; 39 — светодиод, 40 — туннельный диод; 41 — лампа накаливания осветительная и сигнальная 42 — звонок электрический 43 — элемент гальванический или аккумуляторный; 44 — линия электрической связи с одним ответвлением; 45 — линия электрической связи с двумя ответвлениями; 46 — группа проводов, подключенных к одной точке электрическою соединения. Два провода; 47 — четыре провода, подключенных к одной точке электрическою соединения; 48 — батарея из гальванических элементов или батарея аккумуляторная; 49 — кабель коаксиальный. Экран соединен с корпусом; 50 — обмотка трансформатора, автотрансформатора, дросселя, магнитного усилителя; 51 — рабочая обмотка магнитного усилителя; 52 — управляющая обмотка магнитного усилителя; 53 — трансформатор без сердечника (магнитопровода) с постоянной связью (точками обозначены начала обмоток); 54 — трансформатор с магнитодиэлектрическим сердечником; 55 — катушка индуктивности, дроссель без магнитопровода; 56 — трансформатор однофазный с ферромагнитным магнитопроводом и экраном между обмотками; 57 — трансформатор однофазный трехобмоточный с ферромагнитным магнитопроводом с отводом во вторичной обмотке; 58 — автотрансформатор однофазный с регулированием напряжения; 59 — предохранитель; 60 — предохранитель выключатель; б/ — предохранитель-разъединитель; 62 — соединение контактное разъемное; 63 — усилитель (направление передачи сигнала указывает вершина треугольника на горизонтальной линии связи); 64 — штырь разъемного контактного соединения;

Рис 1.1 Условные графические обозначения ЭРЭ в схемах электрических радиотехнических и автоматизации 65 — гнездо разъемною контактного соединения, 66 — контакт разборного соединения например с помощью зажима 67 — контакт неразборного соединения, например осуществленного пайкой 68 — выключатель кнопочный однополюсный нажимной с Замыкающим контактом самовозвратом 69 — контакт коммутационного устройства размыкающий, общее обозначение 70 — контакт коммутационного устройства (выключателя, реле) замыкающий, общее обозначение.


Выключатель однополюсный. 71 — контакт коммутационного устройства переключающий, общее обозначение. Однополюсный переключатель на два направления. 72— контакт переключающий трехпозиционный с нейтральным положением 73 — контакт замыкающий без самовозврата 74 — выключатель кнопочный нажимной с размыкающим контактом 75 — выключатель кнопочный вытяжной с замыкающим контактом 76 — выключатель кнопочный нажимной с возвратом кнопки, 77 — выключатель кноночный вытяжной с размыкающим контактом 78 — выключатель кнопочный нажимной с возвратом посредством вторичного нажатия кнопки, 79 — реле электрическое с замыкающим размыкающим и переключающим контактами, 80 — реле поляризованное на одно направление тока в обмотке с нейтральным положением 81 — реле поляризованное на оба направления тока в обмотке с нейтральным положением 82 — реле электротепловое без самовозврата, с возвратом посредством вторичного нажатия кнопки, 83- разъемное однополюсное соединение 84 — гнездо пятипроводного контактного разъемного соединения, 85 штырь контактного разъемного коаксиального соединения 86 — гнездо контактною соединения 87 — штырь четырехпроводного соединения, 88 гнездо четырехпроводного соединения 59 — перемычка коммутационная размыкающая цепь Таблица 1.1. Буквенные обозначения элементов схем

Продолжение табл.1.1

Окончание табл. 1.1

Таблица 1.2. Отечественные аналоги зарубежных электрорадиоэлементов

Продолжение табл. 1. 2

Продолжение табл. 1.2

Продолжение табл. 1.2

. Продолжение табл. 1.2

Продолжение табл.1. 2

Продолжение табл. 1.2

Окончание табл.1. 2



Условные и сокращенные обозначения


AC — акустическая система

БИС — большая интегральная схема

БП — блок питания

БРЭА — бытовая радиоэлектронная аппаратура

БЭ — блок электроники

В — всеклиматическое исполнение

ДН — делитель напряжения

ЕСКД — единая система конструкторской документа ции

ИМ — исполнительный механизм

ИМС — интегральная микросхема

ИП — измерительный прибор

КД — конструкторская документация

КМОП — комплементарная металлоокисно-полупроводниковая схема кпд — коэффициент полезного действия

М — морской климат

НТД — нормативно-техническая документация

О — общеклиматическое исполнение

ОУ — операционный усилитель

ПП — полупроводник

ППП — полупроводниковый прибор

ПСН — параметрический стабилизатор напряжения

РЭ — регулирующий элемент

РЭА — радиоэлектронная аппаратура

РЭУ — радиоэлектронное устройство

СИП — стабилизированный источник питания

СНПТ — стабилизатор напряжения постоянного тока

СОС — система охранной сигнализации

Т — тропический климат

ТВ — тропический влажный климат

ТД — технологическая документация

ТЗ — техническое задание

ТМ — тропический морской климат

ТС — тропический сухой климат

ТУ — технические условия

У — умеренный климат

УОС — устройство охранной сигнализации

УПТ — усилитель постоянного тока

УС — устройство сигнализации

УХЛ — умеренно холодный климат

ХИТ — химический источник тока

ХЛ — холодный климат

ЦПУ — центральный пульт управления

ЭДС — электродвижущая сила

ЭКЗ — электронный кодовый замок

ЭМ — электромагнит

ЭМС — электромагнитная совместимость

ЭСОС — электронная система охранной сигнализации

ЭРИ — электрорадиоизделие

ЭРЭ — электрорадиоэлемент

ЭУОС — электронное устройство охранной сигнализации

БЫСТРОДЕЙСТВУЮЩЕЕ ОХРАННОЕ УСТРОЙСТВО


10. БЫСТРОДЕЙСТВУЮЩЕЕ ОХРАННОЕ УСТРОЙСТВО

Данное устройство со звуковой сигнализацией тревоги разработано для эксплуатации в помещениях и на открытом воздухе в условиях УХЛ и В при воздействии температуры окружающей среды от —30 до 45 °С, относительной влажности воздуха до 92%, при температуре 22 °С и атмосферном давлении воздуха от 200 до 1000 мм рт. ст. Это обеспечивается схемным решением, конструкцией устройства, технологией его изготовления и примененными ЭРИ и ЭРЭ. Рассматриваемое электронное устройство предназначено для охраны жилых и производственных помещений, офисов, складов, гаражей, приусадебных построек и других стационарных объектов, а также может быть приспособлено для охраны автомобилей и другого подвижного транспорта, в том числе и водного.

Электропитание охранного устройства осуществляется от сети переменного тока напряжением 127 и 220 В частотой 50 Гц, а также от автономных источников питания, имеющих выходное напряжение 9 В. В качестве встроенного источника питания может быть использован ХИТ или аккумуляторная батарея GB1. Охранное устройство имеет простую электронную схему, собранную из комплектующих ЭРЭ широкого применения, и достаточно простую конструкцию, это позволяет повторять его в производствах малых предприятий и акционерных обществ.

Принципиальная электрическая схема быстродействующего охранного устройства, выполненного на одной ИМС, приведена на рис. 2. 10. При промышленном изготовлении данного устройства в комплект поставки входят датчики, БП, ХИТ, БЭ, блок громкоговорителей и монтажный комплект. При изготовлении охранного устройства в условиях радиолюбительской лаборатории можно рекомендовать для монтажа два блока: БП и БЭ.

Блок питания включает в свой состав входные цепи, сетевой понижающий трансформатор питания Т1, выпрямитель, работающий на емкостную нагрузку и выполненный на одной диодной сборке, ПСН, выходную цепь для подключения ХИТ.

Входное устройство обеспечивает подключение к сети переменного тока с помощью электрического соединителя XI типа «вилка»; подключение к автономному источнику питания постоянного тока с помощью малогабаритных приборных контактных зажимов Х2, ХЗ; защиту первичных цепей охранного устройства от перегрузок и коротких замыканий и индикацию о готовности устройства к работе с помощью неоновой лампы тлеющего разряда H1.

В этом устройстве применен сетевой понижающий трансформатор питания Т1, который изготавливается на броневом ленточном магнитопроводе типа ШЛМ с уменьшенным расходом меди.
Трансформатор выбран из унифицированного ряда «Габарит» и характеризуется высокими электромагнитными параметрами и технико-экономическими характеристиками. Трансформатор имеет одну катушку, установленную на центральном стержне магнитопровода, активная площадь поперечного сечения стали которого равна 6, 25 см2. На каркас катушки намотано пять обмоток: две первичные и три вторичные. Первичные обмотки намотаны на одну технологическую операцию сдвоенным проводом, имеющим повышенную прочность изоляционного покрытия. Между первичными и вторичными обмотками уложен слой медного эмалированного провода, один конец которого заземлен, а второй изолирован. На вторичных обмотках трансформатора действует напряжение переменного тока 6, 3 (выводы 7 и 8); 5, 0 (выводы 9 и 10) ; 6,3 (выводы 9 и 11); 5,0 (выводы 12 и 13); 6,3 В (выводы 12 и 14). Всем этим характеристикам отвечает покупной трансформатор типоразмера ТН24-127/220-50. Выходной понижающий трансформатор питания Т1 обеспечивает расчетный уровень выходного выпрямленного напряжения, гальваническую развязку вторичных цепей охранного устройства от сети переменного тока высокого напряжения и дополнительную электробезопасность при его эксплуатации, регулировке и ремонте. Габаритная мощность сетевого трансформатора при полной нагрузке составляет 55... 60 Вт. В устройстве может быть применен самодельный сетевой трансформатор питания с параметрами и моточными данными, приведенными в табл. 2. 13. В качестве выпрямителя в устройстве применена диодная сборка VD1, которая выполнена из четырех выпрямительных диодов по однофазной двухполупериодной схеме. Такой выпрямитель можно устанавливать непосредственно на металлический радиатор без изоляционных прокладок, он характеризуется законченностью конструктивно-технологического оформления, оптимальными малогабаритными свойствами, простотой применения в схеме устройства, улучшенными электрическими параметрами: повышенной частотой пульсации выпрямленного напряжения, достаточно малым значением обратного напряжения на комплекте диодов, хорошим использованием габаритной мощности трансформатора и возможностью работы без трансформатора.


Но недостаток этой схемы — повышенное падение напряжения. Напряжение, снимаемое со вторичной обмотки трансформатора (выводы 7 и 11), поступает на диодную сборку, выпрямляется и затем сглаживается емкостным фильтром, собранным на оксидных электролитических конденсаторах С1 и С2. Конденсатор СЗ служит для фильтрации высокочастотных помех. Таблица 2.13. Моточные данные сетевою понижающею трансформатора питания Т1, примененного в быстродействующем охранном устройстве


Выпрямленное напряжение постоянного тока подается на ПСН, в котором транзистор VT1 усиливает выходную мощность БП. В базу транзистора включен резистор R2, регулирующий выходное стабилизированное напряжение в пределах от 2 до 12 В, которое при регулировке контролируется вольтметром PV1. В качестве автономного источника питания GB1 может быть применена батарея из сухих элементов МЦ-системы, аккумуляторная батарея любой системы или аккумулятор, используемый для питания бортовой сети подвижного транспорта с выходным номинальным напряжением 12 В. При работе охранного устройства от сети переменного тока автономный источник питания отключается. Максимальная нагрузка на выходе БП не должна превышать 1А. Конструктивно БП рекомендуется выполнить в виде самостоятельной сборочной единицы, в отдельном корпусе с соответствующими переходными электрическими кабелями, необходимыми для подключения к сети переменного тока, электронному блоку и звуковому сигна- лизатору. Правильно собранный БП не требует дополнительной регулировки и налаживания. Перечень применяемых в устройстве покупных комплектующих ЭРИ и ЭРЭ и рекомендации по их возможной замене приведены в табл.2.14. Защита БП от перегрузок и коротких замыкании, возникающих при неправильном монтаже выходных цепей, обеспечивается двумя плавкими предохранителями F1 и F2. Электронный блок сигнализации охранного устройства собран на одной ИМС и двух транзисторах, имеющих соответствующие цени управления. ИМС DA1 включает в себя четыре логических элемента 2И-НЕ и образует генератор прямоугольных импульсон (выводы 4...10); реле времени (выводы 1...3); устройство согласования входного сопротивления усилителя звуковой частоты и генератора. Таблица 2.14.


Перечень основных комплектующих ЭРИ и ЭРЭ, примененных в быстродействующем охранном устройстве

Окончание табл. 2.14

В охранном устройстве контакты переключателей S4 и S5 замкнуты, а контакты переключателей S1—S3, устанавливаемые на дверях, окнах, форточках, капотах и т. д.,— разомкнуты. Схема находится в обесточенном состоянии и в ждущем режиме работы. Вместо переключателей S4 и S6 могут быть применены магнитоуправляемые контакты — герконы. При открывании дверей контакты переключателей S1—S3 замыкаются и напряжение питания от стабилизатора или от автономного источника питания подается через диод VD3 на транзистор VT3, включенный в цепь усилителя звуковой частоты. Это же напряжение поступает на второй ПСН, собранный на стабилитроне VD8 и резисторе R5 и питающий микросхему. Конденсатор С5 начинает заряжаться с момента открывания дверей и замыкания контактов переключателей S1—S3 или одного из них. Время зарядки конденсатора С5 определяется величиной сопротивления резистора R13. После зарядки конденсатора С5 напряжение на входе первого элемента ИМС (выводы 1 и 2) достигнет низкого уровня логического нуля, a на его выходе (вывод 3) появится высокий уровень логической единицы, соответствующий напряжению 9 В. Часть этого напряжения, равного 5...7 В, через выпрямительный диод VD9 и ДН, собранный на резисторах R6 и R7, подводится к входу второго элемента ИМС (вывод 5). Все это приводит к самовозбуждению генератора прямоугольных импульсов. Цепь задающей частоты образована конденсатором С6, резистором R9 и транзистором VT2. Электронная схема устройства работает, когда включены контакты переключателей S4, S6. Это происходит одновременно с замыканием контактов переключателей S1—S3. В этом случае контакты переключателя S5 разомкнуты. Напряжение питания через замкнутые контакты и выпрямительный диод VD4 поступает в цепь сигнализации, а через диод VD5 и резистор R3 — на конденсатор С4. Как только напряжение на этом конденсаторе достигнет определенного заданного значения, срабатывает второй элемент ИМС DA1, генератор начинает вырабатывать импульсы — сигналы тревоги.


Частота следования сигналов постепенно нарастает по мере зарядки конденсатора С4 до максимального значения и в результате плавного уменьшения сопротивления транзистора VT2. Громкость подаваемого сигнала тревоги регулируется резистором R11. Изготавливается быстродействующее охранное устройство в виде двух блоков в корпусах прямоугольной конструкции, имеющих лицевые панели и крышки, в которых предусматриваются вентиляционные отверстия. Монтаж ЭРИ и ЭРЭ производится печатным способом на плате из фольгированного одностороннего гетинакса или стеклотекстолита толщиной до 2 мм. Сетевой трансформатор Т1, диодная сборка VD1 и мощные транзисторы VT1 и VT3 устанавливаются отдельно на металлическом шасси и радиаторе охлаждения. На лицевых панелях БП и БЭ размещают органы управления, ИП PV1, разъемы электрических соединителей, приборные контактные зажимы и держатели предохранителей F1 и F2. Все электрические соединители выполняются или способом печатного монтажа, или отрезками тонкого монтажного провода, имеющего надежную изоляцию. Достаточная простота схемно-технического решения позволяет монтировать охранное устройство в условиях радиолюбительской лаборатории и не требует сложной настройки и регулировки. В данном электронном охранном устройстве применены покупные комплектующие ЭРЭ широкого назначения, большинство из которых имеет соответствующие зарубежные аналоги. В качестве измерительного вольтметра может быть использован покупной прибор типа М4231-40 или любой другой вольтметр постоянного тока, рассчитанный на измерение напряжения до 20 В. Можно применить электрические соединители типа ОНЦ-ВГ, СЩ-5, СГ-5, СНО, СНЦ, РПМ. При монтаже и эксплуатации этого охранного устройства необходимо соблюдать правила электробезопасности. Надо помнить, что источник переменного напряжения имеет высокое опасное для жизни напряжение — 220 В. Основные электрические параметры и технические характеристики быстродействующего охранного устройства Номинальное напряжение питающей сети переменного тока, В ....................... .220 или 127 Номинальная частота питающей сети переменного тока, Гц ........................ .50 Номинальное напряжение автономного или внешнего источника питания постоянного тока, В ... .12 Пределы изменения напряжения питающей сети неременного тока, В .................... .180...240 или 110...140 Пределы изменения частоты питающей сети переменного тока, % ................... .±1 Пределы изменения напряжения автономного источника питания, при которых сохраняется устойчивая работа устройства, В ........... .8,5...14 Коэффициент нелинейных искажений питающей сети переменного тока, %, не более ......... .12 Регулируемое выходное стабилизированное напряжение БП, В ......................... .2...12 Нестабильность выходного напряжения постоянного тока, %, не более ..................... . 0, 1 Амплитуда пульсации выходного напряжения постоянного тока, мВ, не более ............. 5 Напряжение вторичной стабилизации, В ........ 5 Коэффициент стабилизации напряжения постоянного тока , не менее .................... 100 Время срабатывания устройства при размыкании контактов, с, не более: S1- S3 .......................... 50 S4.


S6 .......................... 1 Генерируемая частота звукового сигнала при работе устройств, Гц ................... 1100 Количество одновременно охраняемых объектов, шт . 2...10 Уровень давления звукового сигнала при полной мощноти и на расстоянии 1 м от источникя звука, дБ, не более ......................... 110 Mощность, потребляемая устройством в дежурном режиме работы, мВт, не более ............. 20 Мощность, потребляемая устройством при срабатывании звукового сигнала, Вт ............. 20 Помехозащищенность устройства при воздействии внешнего электромагнитного поля, дБ, не менее . 100 Сопротивление изоляции токоведущих частей устройства относительно металлического корпуса, МОм, не менее .................... 15 Масса устройства в комплекте, кг ............ 1,6 кпд, %, не менее ........................ 80 Срок службы устройства, ч ................. 5000 Вероятность безотказной работы устройства при риске заказчика в =0,9, не менее .......... 0,98

Рис. 2.10. Принципиальная схема быстродействующего охранного устройства.

ЭЛЕКТРОННО-РЕЛЕЙНОЕ СТОРОЖЕВОЕ УСТРОЙСТВО С ЕМКОСТНОЙ ПАМЯТЬЮ


14. ЭЛЕКТРОННО-РЕЛЕЙНОЕ СТОРОЖЕВОЕ УСТРОЙСТВО С ЕМКОСТНОЙ ПАМЯТЬЮ

Настоящее устройство относится к группе сторожевых устройств, основу которых составляют электромеханические или электронные контакты, управляющие электромагнитными ИМ и образующие единую сторожевую систему. В этих системах управляющее напряжение подается, как правило, лишь при условии замыкания определенных контактов и в строго определенной последовательности. Включение электромагнита в таких устройствах приводит к перемещению его сердечника и стопора, связанного с механическим замком, после чего можно открывать замок обычным ключом или автоматически. Рассматриваемое сторожевое устройство предназначено для охраны стационарных объектов и в первую очередь жилых и производственных помещений: квартир, офисов, хозяйственных построек, складов, гаражей и т. д.

Изменяя вид ИМ, можно значительно расширить применяемость данного устройства, при этом само устройство принципиально сохраняется в неизменном виде. Например, можно в качестве ИМ использовать устройства звуковой или световой сигнализации, можно применить дополнительные блокировки при ошибках, допущенных при наборе шифра. Но в данном случае рассматривается очень простой вариант срабатывания ИМ при наборе трех цифр кода.

Принципиальная электрическая схема электронно-релейного сторожевого устройства с емкостной памятью приведена на рис. 2. 17. Работает устройство от сети переменного тока напряжением 220 В частотой 50 Гц через понижающий трансформатор. Электропитание основной схемы и исполнительных механизмов осуществляется стабилизированным напряжением 24 В постоянного тока. Электропитание сторожевого устройства от автономного вторичного источника питания не предусмотрено.

При конструировании данного сторожевого устройства рекомендуется выполнить его в виде самостоятельных функциональных узлов, связь между которыми должна осуществляться с помощью электрического монтажа. Для обеспечения этого условия в конструкциях отдельных блоков необходимо предусмотреть необходимое количество быстроразъемных соединений и приборных контактов, которые имеют минимальное переходное сопротивление.
Условно всё устройство можно выполнить в виде трех блоков — самостоятельных сборочных единиц: БП, БЭ, блока исполнительных механизмов. Достаточно трудоемкой для изготовления частью электронного сторожевого устройства является БП, выполненный на ППП. Схемно-техническое решение БП является традиционным, не включает в себя сложных элементов и поэтому вполне доступно для повторения начинающими радиолюбителями. Изготовленный в домашней мастерской данный БП значительно расширяет возможности радиолюбительской лаборатории, дает возможность приобрести дополнительный опыт конструирования РЭУ с системой защиты и использовать данный БП в практических целях, так как он имеет высокие технические характеристики и безопасен при эксплуатации. Защитное устройство в БП позволяет также избежать порчи остродефицитных и дорогостоящих ЭРИ и ЭРЭ при перегрузках и коротких замыканиях. БП включает в свой состав входные цепи, сетевой понижающий трансформатор питания Т1, выпрямитель, емкостный фильтр, стабилизатор напряжения постоянного тока, защитное устройство с ограничением выходного тока при перегрузке и с контролем уровня выходного напряжения. Отличительной особенностью примененного защитного устройства является то, что оно срабатывает как при повышении, так и при понижении напряжения на нагрузке. Защитный узел БП может быть использован в других ЭРИ в составе различных типов стабилизаторов, так как он проверен при эксплуатации и всегда дает положительный результат. Блок питания выполнен на шести транзисторах VT1— VT6. Подключение БП к сети переменного тока осуществляется с помощью электрического соединителя X1 типа «вилка». Два плавких предохранителя F1 и F2 рассчитаны на ток срабатывания 0,5 А при полной нагрузке, защищают входные цепи и устройство от коротких замыканий при ошибках в монтаже. Установленные на входе БП два конденсатора С1 и С2 параллельно первичной обмотке трансформатора Т1 защищают устройство от низкочастотных помех, проникающих в сеть питания переменного тока. Включение и выключение электропитания обеспечивается однополюсным переключателем S1. В БП использован самодельный сетевой понижающий трансформатор питания Т1, изготовленный на броневом магнитопроводе типа Ш или ШЛ.


Активная площадь поперечного сечения стали основного стержня магнитопровода должна быть не менее 6,5 см^2. Выполнение этого условия обеспечивается шихтованным магнитопроводом типоразмера Ш25Х25. Можно применить магнитопровод ШЛ25Х32, ШЛМ25Х25, УШ20Х30. Сетевой трансформатор обеспечивает на выходе 33 В переменного напряжения в режиме холостого хода, заданное выпрямленное напряжение постоянного тока, а также полную гальваническую развязку между первичной и вторичными цепями устройства. Для намотки первичной обмотки трансформатора применен провод марки ПЭВ-1 диаметром 0,31 мм и провод марки ПЭВ-2 диаметром 0,76 мм для вторичной обмотки. Первичная обмотка содержит 1210 витков, вторичная — 182 витка. При изготовлении сетевого трансформатора необходимо точно соблюдать технологические приемы для того, чтобы обеспечить заданные электрические параметры. Основные рекомендации по изготовлению и изоляции трансформаторов рассмотрены выше. Сетевой понижающий трансформатор питания должен обеспечивать следующие электрические параметры и технические характеристики на протяжении всего периода эксплуатации: Рабочий диапазон частот, Гц ................ 30...200 Номинальная мощность, Вт ................. 50 Резонансная частота, Гц, нс менее ............ 1000 Максимальное значение испытательного напряжения, В ............................ 500 Коэффициент нелинейных искажений на граничных частотах рабочего диапазона, %, не более . . 5 Коэффициент амплитудно-частотных искажении в рабочем диапазоне частот, дБ ............. ±2 Максимальная амплитуда переменного входного напряжения, В ........................ 280 Предельное отклонение сопротивления постоянному току, %, не более .................. ± 15 Максимальное напряжение на первичной обмотке трансформатора, В ..................... 440 Сопротивление нагрузки трансформатора, кОм .... 0,01...20 Максимальное постоянное напряжение на обмотках трансформатора по отношению к шасси сторожевого устройства, В ................ 300 Коэффициент трансформации ................ 6,65 Сопротивление изоляции между обмотками, а также между каждой обмоткой и магнитопроводом, МОм, не менее ................ 20 Максимальное отклонение коэффициента трансформации, %, не более .................. ±5 Номинальное выходное напряжение переменного тока на вторичной обмотке, В .............. 33 Выпрямитель сторожевого устройства собран по традиционной однофазной двухполупериодной мостовой схеме на четырех диодах VD1-VD4 средней мощности.


Выпрямитель работает на емкостную нагрузку на оксидном конденсаторе С3. На выходе выпрямителя под нагрузкой действует постоянное напряжение 25 В, которое подается наi стабилизатор напряжения, собранный на транзисторах VT2—VT4. Стабилизатор напряжения компенсационного типа обеспечивает необходимую стабильность. напряжения на нагрузке при помощи отрицательной обратной связи, воздействующей на РЭ. В состав компенсационного стабилизатора последовательного типа входят следующие основные функциональные узлы: РЭ, устройство сравнения и УПТ. Регулирующий элемент выполнен на составном транзисторе VT2, VT3. Схема стабилизатора собрана по классическому варианту, и в данном случае оригинальным решением является защитное устройство. Защитное устройство, собранное на транзисторах VT1, VT5, VT6, работает следующим образом. При уменьшении выходного напряжения до 21 В или при увеличении выходного напряжения до 27 В при номинальном напряжении 24 В защитное устройство срабатывает, обесточивая стабилизатор напряжения. Основным ИМ защитного устройства является электромагнитное реле К1. При перегрузке или коротком замыкании, когда стабилизатор входит в аварийный режим, напряжение на нагрузке резко уменьшается и при его суммарном значении на стабилитронах VD10 и VD11 становится ниже действующего на них, транзистор VT5 закрывается. Начинает заряжаться конденсатор С5, и при определенном значении напряжения открывается транзистор VT1, срабатывает электромагнитное реле К1 и самоблокируется контактами К1.1. В это же время параллельно включенные контакты реле К1.2 и К1.3 размыкаются, обесточивая стабилизатор напряжения. При повышении напряжения на нагрузке, которое вызовет также аварийный режим работы и будет выше напряжения стабилизации цепи стабилитронов VD12, VD13, откроется транзистор VT6, что в свою очередь приведет к закрыванию транзистора VT5 и отключению стабилизатора от выпрямителя так же, как и при понижении напряжения на нагрузке. Конденсатор С1 играет роль буфера, который при первом включении еще не зарядился, тем самым он обеспечивает необходимую задержку включения.


Этот конденсатор выполняет еще одну функцию — помехозащитною фильтра. Но основное время задержки срабатывания зависит от параметров электромагнитного реле К1. Максимальное время задержки составляет ориентировочно 20 мс. Основными элементами сторожевого устройства и БЭ являются конденсаторы С8, С9 и С10, емкость которых рассчитана на определенное напряжение срабатывания электромагнитного реле КЗ, транзистор V'T7, выпрямительные диоды VD15-VD18, электромагнит ЭМ1 и детали коммутационные. Шифровальный узел устройства включает в себя набор электрических соединителей Х2—Х25, перемычки, устанавливаемые между этими соединителями, и переключатели S2—S7. Конструктивно шифровальный узел рекомендуется расположить на лицевой плате БЭ. В данном случае удобно рассмотреть работу устройства при кодировании трехзначного числа. Всегда первая цифра кода соответствует номеру кнопки первого переключателя S2, подключенной к гнездам Х2 и Х4, вторая цифра — номеру кнопки, подключенной к гнездам соединителей Х6 и Х8, третья — номеру кнопки, подключенной к гнездам соединителей Х10 и Х12. Для того чтобы сработало устройство охраны, кнопки должны быть нажаты в порядке установленного шифра. Кнопки переключателей S5—S7 являются некодовыми, и в случае нажатия любой из них устройство не сработает. В данном случае установлен шифр 123. Для установления другого шифра необходимо сделать перетрассировку перемычек, соединяющих их. Например, если потребуется установить шифр 624, необходимо Х22 соединить с ХЗ, Х24 с Х5; Х6 с Х7, Х8 с Х9; Х14 с X11, Х16 с Х13. Остальные пары соединителей можно устанавливать в любом порядке. Например, Х2 с Х15, Х4 с Х17, Х10 с Х19, Х12 с Х21; Х18 с Х23, Х20 с Х25. Таким образом, цифры, указанные над переключателями S2—S7, являются цифрами будущего шифра, а цифры, стоящие в кавычках (также с 1 до б), указывают на порядок счета при нажатии кнопок. Любая верхняя на схеме цифра кода — с 1 до 6 — имеет только ей принадлежащую пару контактных соединителей. Поэтому при изготовлении кодировочного узла очень удобно объединять эти пары и включать одновременно в гнезда, устанавливающие порядок счета.


Так, цифре кода, обозначенной 1, соответствуют контакты соединителей Х2 и Х4, цифре 2 — контакты Х6 и Х8 и т. д. Соединять пары контактов Х2 и Х4, Х6 и Х8 и т. д. можно с любыми парами контактов дешифратора. Заметим еще раз, что контакты соединителей ХЗ и Х5 обозначены цифрой 1, контакты Х7 и Х9 — цифрой 2, X11 и Х13 — цифрой 3, Х15 и Х17 — цифрой 4, Х19 и Х21 — цифрой 5 и Х23 и Х25 — цифрой 6. Цифры дают только порядок считывания зашифрованного кода, который не изменяется в данной схеме. При нажатии первой кнопки S2 конденсатор С8 начинает заряжаться напряжением, которое снимается с резистора R13 (по расчету — до 85% его номинального значения). Срабатывает первая цифра кода. При нажатии на вторую кнопку переключателя S3 до такого же напряжения начинает заряжаться конденсатор С9; при нажатии третьей кнопки S4 конденсатор С10 заряжается до полного напряжения, действующего на резисторе R13. Таким образом, суммарное напряжение на конденсаторах С8—С10 после набора правильного шифра 123 будет составлять только 27% напряжения, снимаемого с резистора R13 и достаточного для срабатывания электромагнитного реле КЗ. При правильном нажатии лишь двух кнопок шифра напряжение на конденсаторах С8— С10 окажется недостаточным для срабатывания этого реле. В случае нажатия любой другой кнопки переключателей S5—S7 конденсаторы тут же разрядятся через диоды VD15—VD18 и сторожевое устройство вернется в исходное состояние. После правильного набора шифра необходимо нажать кнопку переключателя S8. При этом на базу транзистора VT7 будет подано напряжение отрицательной полярности, транзистор VT7 откроется и сработает электромагнитное реле КЗ. Контакты этого реле КЗ.3 включат электромагнит, который своим сердечником связан с механическим замком, и он откроется. Одновременно контакты КЗ.2 подключат резистор R12 к базе транзистора, а через контакты реле КЗ.1, резистор R13 и диоды VD15—VD17 конденсаторы С8—С10 разрядятся. При отпускании кнопки переключателя S8 база транзистора VT7 вновь соединится с плюсом источника питания, транзистор закроется и устройство возвратится в исходное состояние.


При изготовлении сторожевого устройства использованы следующие покупные и самодельные комплектующие ЭРИ и ЭРЭ: транзисторы VT1 типа КТ203А, VT2 — КТ803А, VT3 — КТ81В, VT4 — КТ814В, VT5 — КТ203Б, VT6 — КТ203Б, VT7 — П214; конденсаторы С1 типа МБМ-11-750В-0,01 мкФ, С2-МБМ-11-750В-0.01 мкФ, СЗ — К50-6-50В 50 мкФ, С4 — K50-6-50В-4000мкФ, С5-К73-17-63В-1мкФ С6-К-10-17-50В-П33-100нФ, С7 — К53-1А-30В-б,8 мкФ, С8-К50-3-15В-10 мкФ, С9 — K50-3-15B-68 мкФ, С10 - К50-3-15В-400 мкФ; резисторы R1-типа ВСа-0,5-330Ом, R2-ВСа-0,25-110 Ом R3-ВСа-0,25-680 Ом, R4 — ВСа-0,5-10 кОм, R5 - ВСа-0,5-2,7 кОм, R6 — ВСа-0,25-15 кОм, R7 — ВСа-0,25-10 кОм, R8 — ВСа-0,25-2,7 кОм, R9 — ВСа-0,25-2,7 кОм, R10 — ВСа-0,25-10 кОм, R11 — ВСа-0,25-2,7 кОм, R12 — ВСа-2-390 Ом, R13 — ВСа-0,5 160 Ом; выпрямительные диоды VD1—VD4 типа Д242Б, VD5 — КД522Б, VD15 — Д220, VD 16 — Д220, VD17 - Д220, VD18 — Д220; стабилитроны VD6 типа Д818А, VD7 - Д818А, VD8 — Д818А, VD9 — Д818А, VD10 — Д814Г VD11 — Д814Г, VD12 — Д814Д, VDI3 — Д814Д, VD14 — Д818А; электрические соединители X1 типа «вилка» с электрическим кабелем длиной 1,5 м, Х2—Х25 типа КМЗ-1 или сдвоенные контактные пары соединителей; плавкие предохранители F1 и F2 типа ПМ-1-1,5 А; переключатели S1 типа П1Т-1-1, S2-S7 - КМ1-1, S8 - КМ1-1; электромагнитные реле К1 типа РЭС-22 (паспорт РФ4.500.122), К2 — РЭС-6 или электромагнит самодельной конструкции, КЗ — РЭС-22 (паспорт РФ4.500.163); сетевой понижающий трансформатор питания Т1 броневой конструкции типа Ш (УШ, ШЛ). При изготовлении, регулировке и ремонте сторожевого устройства могут быть использованы другие комплектующие ЭРЭ. Например, вместо резисторов типа ВСа можно применить резисторы типов МЛТ, ОМЛТ, МТ, С 1-4, С2-8 и другие, можно применить оксидные конденсаторы типов К50-6, К50-12, К50-16, К50-20. Вместо реле типа РЭС-22 можно применить реле типа РЭС-6 (паспорт РФО.452.131), вместо транзистора типа КТ803 — КТ819Б, КТ819В, КТ819Г, КТ827А, КТ827Б, транзистор типа КТ815В можно заменить на транзисторы типов КТ815Б, КТ801Б, КТ817Б, а КТ814В — на КТ814Г. Настройка БП обеспечивается подборкой цепи стабилитронов VD10, VD11 так, чтобы их суммарное напряжение стабилизации было равно 21 В, а цепи VD12, VDI3 — 26,5...27 В.


Налаживание БЭ сводится к правильному выбору сопротивления резистора R13, падение напряжения на котором должно обеспечить достаточный заряд конденсаторов С8, С9 и С10. Основные электрические параметры и технические характеристики электронно-релейного сторожевого устройства с емкостной памятью Номинальное напряжение читающей сети переменного тока, В....................... 220 Номинальное напряжение стабилизированною постоянного тока, В................... 24 Номинальная частота питающей сети переменного тока, Гц ......................... 50 Коэффициент нелинейных искажений питающей сети переменного тока, %, нс более ......... 12 Пределы изменения напряжения питающей сети переменного тока, В .................... 180...240 Пределы изменения частоты питающей сети неременного тока, % ..................... ±1 Коэффициент стабилизации выпрямленного напряжения постоянного тока, нс менее ........ 300 Суммарное напряжение стабилизации на стабилитронах, В: VD10—VD11 ......................... 21 VD12—VD13 ......................... 26.5...27 Амплитуда пульсации выходного напряжения при токе нагрузки до 1,5 А, мВ, не более ......... 2 Максимальный ток нагрузки на выходе стабилизатора напряжения, А ................... 4,5 Напряжение срабатывания защитного устройства, В (нижнее и верхнее значения) ............. 21 и 27 Напряжение питания реле, В ............... 24 Количество одновременно охраняемых объектов ... 1 Время срабатывания сторожевого устройства при правильном наборе шифра, мс, не более ...... 2 Срок службы, ч, не менее .................. 5000 Вероятность безотказной работы устройства при риске в=0,95, не менее .................. 0,97 Сопротивление изоляции токоведущих проводников монтажа между собой и металлических частей сторожевого устройства, МОм, не менее ....... 20 Помехозащищенность устройства при воздействии внешнего электромагнитного поля, дБ, не менее . 120 кпд, %, не менее ........................ 80 Условия эксплуатации: температура окружающей среды, С .........—25...+45 относительная влажность воздуха при температуре 25 °С, %, не более ............... 92±3 атмосферное давление воздуха, мм рт. ст. ..... 200...900


Рис. 2.17. Принципиальная схема электронно-релейного сторожевого устройства с емкостной памятью.

ЭЛЕКТРОННОЕ КОМБИНИРОВАННОЕ УСТРОЙСТВО СИГНАЛИЗАЦИИ


4. ЭЛЕКТРОННОЕ КОМБИНИРОВАННОЕ УСТРОЙСТВО СИГНАЛИЗАЦИИ

Для изготовления в домашней мастерской и для практического использования предлагается к рассмотрению достаточно простое УС, содержащее всего одну ИМС и три транзистора. Монтаж, регулировка и настройка этого устройства доступны подготовленному радиолюбителю.

Электронное комбинированное сторожевое устройство со световой и звуковой сигнализацией предназначено для охраны жилых, производственных и хозяйственных помещений, а также транспортных средств от несанкционированного вторжения. Оно может быть установлено на дверях, окнах, форточках, люках, крышках, капотах и т. п. Простота конструктивного и схемно-технического решений электронного комбинированного УС делает его общедоступным для тиражирования в радиолюбительских лабораториях, цехах малых предприятий и мастерских юных техников. УС может быть применено для охраны объектов на садово-огородных участках. В данном устройстве применяются комплектующие изделия и элементы общего назначения, которые имеются в торговой сети, что значительно снижает стоимость его изготовления при серийном производстве. В целом охранное устройство имеет высокие технико-экономические показатели: например, в режиме холостого хода максимальный ток, который потребляет УС, не превышает 5 мА. УС работает от сети переменного тока напряжением 220 В частотой 50 Гц, а также и от аккумуляторной батареи напряжением 12 В.

Принципиальная электрическая схема устройства со световой и звуковой сигнализацией приведена на рис. 2. 3. Как следует из данной электрической схемы, УС включает в свой состав входное устройство, сетевой понижающий трансформатор питания Т1, выпрямительное устройство с емкостным фильтром, СИП, устройство электронной сигнализации комбинированного тока и выходные сторожевые цепи.

Входное устройство обеспечивает подключение к сети переменного тока напряжением 127 или 220 В, а также к аккумуляторной батарее GB1; предохраняет УС от коротких замыканий в первичных цепях, которые часто возникают при неправильной сборке или монтаже и из-за

некачественных комплектующих ЭРЭ; сигнализирует о готовности УС к эксплуатации.
На входе установлен плавкий предохранитель F1,сигнальная лампа Н1 и однополюсные переключатели В1 и В4. Подключение к сети переменного тока осуществляется с помощью электрического соединителя X1 типа «вилка», смонтированного с электрическим кабелем, имеющим повышенное сопротивление изоляции. Длина кабеля колеблется в пределах от 1, 5 до 2, 3 м. Для переключения напряжения с 220 В на напряжение 127 В на входе устройства установлены два держателя предохранителя F1 (на схеме не указано), один из которых подключен к обмоткам выводов трансформатора 1 и 3, а второй — к выводам обмоток 2 и 3. Сетевой понижающий трансформатор питания 77 изготавливается на магнитопроводе броневой конструкции типа ШЛ, Ш или УШ, имеет одну катушку с тремя обмотками, изолированными друг от друга лакотканью с повышенной электропрочностью. Катушка трансформатора устанавливается на центральном стержне магнитопровода, активная площадь поперечного сечения которого должна быть не менее 4, 5... 5 см2. Сетевой трансформатор питания обеспечивает расчетный уровень выпрямленного напряжения постоянного тока, полную гальваническую развязку вторичных цепей устройства от высокого напряжения переменного тока питающей сети, а также дополнительную электробезопасность при эксплуатации устройства, так как на вторичной обмотке трансформатора Т1 и элементах электронной схемы действует пониженное безопасное напряжение. Моточные данные самодельного сетевого понижающего трансформатора Т1 приведены в табл. 2. 6. На выходных обмотках сетевого трансформатора Т1 в режиме холостого хода действуют переменные напряжения 6, 3 В (выводы 6 и 7) и 13, 5 В (выводы 4 и 5). Вместо самодельного трансформатора в данном УС можно применить готовый унифицированный трансформатор типов ТА, ТН, ТАН, ТПП, ТС, ТТ, например можно использовать трансформатор типа ТПП277-127/220-50. К выводам вторичной обмотки б и 7 подключена сигнальная лампа H1 с напряжением питания 5... 6 В. К выводам 4 и 5 трансформатора подключено выпрямительное устройство, собранное по однофазной двухполупериодной мостовой схеме на четырех выпрямительных Таблица 2. 6.


Моточные данные сетевого понижающего трансформатора питания Т1, примененного в комбинированном электронном сторожевом устройстве


диодах VD1 — VD4 и относящееся к выпрямителям нерегулируемого типа. Рассматриваемый выпрямитель, выполненный по схеме Греца, характеризуется рядом положительных и отрицательных параметров. К положительным параметрам выпрямительного устройства можно отнести повышенную частоту пульсации выпрямленного напряжения постоянного тока, более полное использование габаритной мощности трансформатора, сравнительно низкий уровень обратного напряжения на комплекте выпрямительных диодов, повышенную мощность, которую можно получить с этого выпрямителя. К недостаткам мостовой схемы относятся: значительное количество используемых выпрямительных диодов, сравнительно большая (по сравнению с другими схемами) стоимость изготовления выпрямителя, невозможность установки однотипных выпрямительных диодов на металлические радиаторы охлаждения без изоляционных прокладок, пониженное значение кпд и повышенные потери. Выпрямительные диоды в такой схеме имеют легкие условия эксплуатации, высокую надежность работы и повышенный срок службы. Работает выпрямитель Греца на емкостный фильтр, собранный на оксидных конденсаторах. Пульсации выпрямленного напряжения постоянного тока сглаживаются сначала фильтром на конденсаторах С1 и С2, а затем П-образпым фильтром, включающим в свои состав оксидные конденсаторы СЗ, С4 и резистор R2. В схеме электронного комбинированного УС на выходе выпрямителя собран ПСН, составленный из стабилитрона VD5. балластного резистора R1 и усилителя тока, выполненного на транзисторе VT1. Стабилизатор напряжения обеспечивает на выходе постоянное стабилизированное напряжение 12В при токе нагрузки до 100 мЛ. Для увеличения мощности стабилизатора и тока нагрузки транзистор VT1 может быть заменен более мощным, например из серии К. Т608, П216. В состав УС входят ИМС DA1, два маломощных транзистора VT3, VT2 и тиристор VD 10 (VS1). Включается устройство двумя электрическими переключателями B1 и В2. Первый выключатель подготавливает устройство к работе, о чем свидетельствует загорание сигнальной лампы H1. Выключатель В2, расположенный скрытно, включает собственно сигнальное устройство.


При включении питания начинает заряжаться электролитический конденсатор С6 через резистор R4. Транзисторы в это время закрыты. ИМС, состоящая по существу из четырех полевых транзисторов с изолированным затвором, работает в ключевом режиме. При напряжении питания до 6 В эти ключи закрыты. Как только конденсатор С6 зарядится до напряжения 8 В и напряжение на затворах транзисторов микросхемы достигнет 4 В, на выводе 3 появится напряжение высокого уровня — напряжение питания. Следует заметить, что выводы 2 и 6 ИМС являются затворами полевых транзисторов, вывод 3 — истоком, 10 и 12 — стоками, 9 и 13 — затворами, 11 — изолированным затвором на общей подложке. ИМС DAI представляет собой четырехтранзисторный переключатель. Конденсатор С6 заряжается до порогового напряжения примерно за 1, 5 мин, и за это время необходимо отключить замкнутый контакт, например дверь охраняемого объекта. Если на объекте установлено несколько скрытых выключателей, то указанное время отсчитывается от момента включения последнего переключателя. Регулировка времени срабатывания УС обеспечивается изменением номиналов электрической цепочки R4, С6. На транзисторах VT2, VT3 собран мультивибратор, предназначенный для управления тиристором VD10 (VS1), в анодную цепь которого включают звуковой сигнализатор или несколько звуковых сигнализаторов. При включении электропитания переключателем В2 питание подается на мультивибратор. С этого момента вся система сигнализации находится в дежурном режиме работы, потребляя минимальный ток. Конденсаторы С7 и С8 пока не заряжены, а транзисторы VT2 и VT3 и тиристор VD10 (VS1) закрыты. Переключатели S1 и S2 установлены так, что при открывании дверей или окон, где они установлены, их контакты замыкаются, и в это время вывод 9 микросхемы через электрическую цепочку R5, VD7 подключается к отрицательному полюсу источника питания. Если после открывания двери ее опять закрыть и тем самым снова замкнуть контакты кнопочного переключателя S1 или S2, конденсатор будет медленно разряжаться через резистор R4. Конденсатор С6 заряжается примерно за 2 мин, а разряжается за 1, 5 мин.


После зарядки конденсатора С6 на выводе 8 ИМС DAI появляется полное напряжение питания, которое сохраняется до тех пор, пока напряжение на выводе 9 не станет меньше порогового значения. В течение 1, 5 мин тревожный сигнал будет продолжаться, хотя дверь уже закрыта. В момент, когда на выводе 8 ИМС появляется полное напряжение, начинает заряжаться конденсатор С8 через резистор R12 и открывается транзистор VT2. Мультивибратор переходит в рабочий режим. В это же время на управляющий электрод тиристора VD10 (VSI) поступают через резистор R17 открывающие его импульсы с частотой примерно 0, 5 Гц и подаются прерывистые звуковые сигналы. Задержка времени от момента открывания двери до появления звукового сигнала равна 15... 18 с. За это время переключатель В2 переводится в положение «включено». Процесс восстановления режима сигнального устройства к повторному включению длится ориентировочно 1 мин. При замыкании контактов S4, S5 световой и звуковой сигналы включаются практически мгновенно. При их замыкании через цепь R7, VD9 вывод 13 ИМС DAI подключается к отрицательному полюсу источника питания, появляется напряжение питания на выводе 14 ИМС и через резистор R13 заряжается конденсатор С8. В данном случае почти без задержки срабатывает мультивибратор. В это же время напряжение на конденсаторе С8 продолжает повышаться, что приводит к увеличению частоты Жуковых сигналов, которые затем сливаются в епрерывное гудение. В УС применяются следующие комплектующие изделия и элементы: сетевой понижающий трансформатор питания Т1 броневой конструкции типа ШЛ; ИМС DA1 типа K1KТ682B; транзисторы VT1 тина КТ603Б, VT2 КТ315А, VT3 — KT361A; выпрямительные диоды VD1—VD4 типа КД105Б, VD6- VD9 — Д220; стабилитрон VD5 тина Д814Д; тиристор VD10 (VS1) типа КУ202Н; конденсаторы С1 типа К50-3-50В-200 мкФ, С2 — К50-3-16В-100 мкФ, СЗ— К50-3-16В-200 мкФ, С4 — К50-3-16В-200мкФ, С5— К50-3-16В-10мкФ,С6— К50-3-16В-50 мкФ, С7 — К50-3-16В-20 мкФ, С8— К50-3-16В-10 мкФ, С9 — К50-3-16В-200 мкФ, С10— К10-7В-50В-Н30-3300 пФ, СИ— К50-3-25В-50 мкФ; резисторы R1 типа ВСа-0.5-470 Ом, R2 — ВСа-0,125-150 Ом, R3 — ВСа-0,125-30 кОм, R4 - ВСа-0,125-2,0 МОм, R5 — ВСа-0,125-30 кОм, R6 — ВСа-0,125-1,3 кОм, R7 — ВСа-0,125-1,3 кОм, R8— ВСа-0,125-2,0 МОм, R9 — ВСа-0,125-30 кОм, R10 — ВСа-0,125-1,3 кОм, R11 — ВСа-0,125-30 кОм, R12 — ВСа-0,125-150 кОм, R13— ВСа-0,125-100 кОм, R14 — ВСа-0,125-240 кОм, R15 — ВСа-0,125-30 кОм, R16— ВСА-0,125-50 кОм, R17— ВСа-0,125-100 Ом, R18— ВСа-0,125-100 Ом, R19 — ВСа-2-240 кОм; электрический соединитель X1 типа «вилка» с электрическим кабелем длиной 1,5 м; плавкий предохранитель F1 типа ПМ-1-0,25 А; индикаторные лампы H1 типа МН-6,3-0,3 А, Н2—Н4— А-12; аккумуляторная батарея средней емкости GBI с номинальным напряжением постоянного тока 12 В; переключатели В1, ВЗ, В4 типа П2Т-1-1, 52, SI—S5 типа П2К; громкоговоритель ВА1 с сопротивлением обмотки около 4 Ом или телефонный капсюль динамического типа. При монтаже, регулировке и -ремонте УС могут быть применены другие комплектующие изделия и ЭРЭ, не ухудшающие основные электрические параметры устройства и его эксплуатационные характеристики.


Например, сетевой понижающий трансформатор питания T1 типа ТС-5-4 можно заменить самодельным трансформатором с характеристиками, указанными в табл. 2.6. Диоды типа КД105Б можно заменить на КД102, КД103, КД105, Д226; стабилитрон типа Д814Д — на Д813; транзистор типа КТ603Б — на КТ608, КТ815, ГТ404; тиристор типа КУ202Н — на КУ202А, КУ202Б; электролитические конденсаторы типа К50-3 — на К50-6, К50-12, К50-16, К50-20; резисторы типа ВСа — на МЛТ, МТ, ОМЛТ, ВС, УЛИ, Cl-4, C2-8. При изготовлении устройства рекомендуется объединить БП и БЭ в единую конструкцию, выполненную в пластмассовом корпусе, на лицевой панели которого необходимо предусмотреть выводы для подключения шлейфа, внешнего автономного источника электропитания, блока громкоговорителей и датчиков, устанавливаемых на¦ входных дверях, окнах и т. д. Монтаж всех элементов сторожевого устройства необходимо выполнять только при отключенном напряжении питания. Блоки, узлы и датчики устройства должны быть размещены в местах, защищенных от влаги, масла, ныли, высокой температуры, агрессивных паров различных жидкостей и обязательно в труднодоступных для посторонних лиц местах так, чтобы их нельзя было сразу обнаружить и вывести из строя. Основные электрические параметры и технические характеристики электронного комбинированного сторожевого устройства Номинальное напряжение питающей сети неременного тока, В ....................... .220 или 127 Номинальная частота питающей сети переменного тока, Гц ............................ .50 Номинальное напряжение автономного источника питания постоянного тока, В .............. .12 Пределы изменения напряжения питающей сети переменного тока, В .................... .187...242 Пределы изменения частоты питающей сети переменного тока, Гц ..................... .49,5...50,5 Пределы изменения напряжения автономного источника питания, при которых обеспечивается устойчивая работа устройства, В .... .10...14 Коэффициент нелинейных искажений питающей сети переменного тока, %, не более ......... .12 Выходное стабилизированное напряжение для электропитания блоков устройства и подзарядки аккумуляторной батареи, В .......... .12±0,05 Коэффициент стабилизации, не менее .......... .100 Амплитуда пульсаций стабилизированного напряжения постоянного тока, мВ, не более ........ .15 Ток, потребляемый устройством от сети переменного напряжения в режиме холостого хода, мА, не более .......................... 10 Ток, потребляемый от автономного источника питания, в режиме холостого хода, мА, не более . . .5 Максимальная мощность сторожевого устройства при включенной сигнализации, Вт .......... .35...40 Сопротивление изоляции токоведущих частей устройства относительно друг друга и металлического корпуса, МОм, не менее .......... .5 Напряжение на выводах вторичных обмоток трансформатора 77, В: 5 и б ............................ .6 7 и 8............................. 13, 5 Помехозащищенность устройства при напряженности внешнего электромагнитного ноля, дБ, не менее............................. 80 Вероятность безотказной работы устройства при Р =0, 92, не менее............... 0,97 Срок службы, ч, не менее .................. 5000 кпд, %, не менее ........................85

Рис. 2.3. Принципиальная схема комбинированного электронного устройства сигнализации.

ЭЛЕКТРОННОЕ ОХРАННОЕ УСТРОЙСТВО ДЛЯ ПРИУСАДЕБНОГО УЧАСТКА


8. ЭЛЕКТРОННОЕ ОХРАННОЕ УСТРОЙСТВО ДЛЯ ПРИУСАДЕБНОГО УЧАСТКА

Это охранное устройство является частью системы, разработанной для установки на садово-огородных и приусадебных участках для одновременной охраны сразу нескольких близко расположенных друг от друга помещений и объектов: дома, гаража, хозблока, погреба, стационарного наружного термостата для хранения различных сельскохозяйственных продуктов, сарая, курятника и др. Данное универсальное устройство обеспечивает полную сохранность имущества, работая в комплекте с другими устройствами, передающими информацию на центральный пульт. Электронное устройство срабатывает при проникновении постороннего лица на охраняемый объект или в помещение, подавая либо звуковой, либо световой сигнал тревоги, либо передавая электромагнитный сигнал на обслуживаемый общий пульт управления. Если вместо микропереключателей S1—S4, работающих на размыкание, проложить тонкий обмоточный эмалированный провод диаметром 0, 08... 0, 12 мм по периметру охраняемого объекта, то обрыв его в любой точке также приводит к срабатыванию сторожевого устройства.

Принципиальная электрическая схема охранного устройства, выполненная на минимальном количестве комплектующих ЭРЭ, приведена на рис. 2. 8. Конструктивно охранное устройство рекомендуется изготовить в виде двух функциональных сборочных единиц: БП и блока электронного управления. Блок электропитания работает от сети переменного тока напряжением 220 В частотой 50 Гц и, как видно из принципиальной схемы, в свою очередь состоит из входных цепей, сетевого понижающего трансформатора питания T1, выпрямителя, работающего на емкостный фильтр, и электронного стабилизатора напряжения. Электронный блок управления включает в свой состав две ИМС DA1 и DA2, комплект концевых микровыключателей и ИМ любого принципа действия, например электромагнитное или электронное реле или радиоизлучатель.

Входные цепи электронного сторожа обеспечивают подключение его к сети переменного тока с помощью электрического соединителя X1 типа «вилка», смонтированною с электрическим кабелем, имеющим повышенное сопротивление изоляции; обеспечивают предохранение элементов схемы от коротких замыкании и перегрузок с помощью плавкого предохранителя F1; обеспечивают сигнализацию о готовности устройства к эксплуатации с помощью индикаторной лампы H1 тлеющего разряда, включенной в сеть переменного тока.
Включение электропитания осуществляется переключателем В1. Сетевой понижающий трансформатор питания Т1 изготавливается на броневом ленточном магнитопроводе типа ШЛ. В данном случае в сторожевом устройстве использован унифицированный трансформатор типа ТН2-127/220-50. Сетевой трансформатор обеспечивает расчетный уровень выпрямленного напряжения, полную гальваническую развязку вторичных цепей охранного устройства от сети высокого напряжения переменного тока, а также дополнительную электробезопасность при эксплуатации. Первичная обмотка трансформатора рассчитана на подключение к сети переменного тока напряжением 220 или 127 В частотой 50 Гц. На вторичной обмотке сетевого трансформатора действует переменное напряжение в режиме нагрузки: 6, 3; 5, 0; 1, 3 В (выводы 7 и 8, 9 и 10, 10 и 11 соответственно). Для изготовления самодельного трансформатора в табл. 2. 10 приведены все необходимые сведения. При изготовлении трансформатора надо особое внимание уделить изоляции рядов обмоточного провода как между собой, так и между обмотками, а также пропитке изоляционными лаками. Выпрямитель собран по однофазной двухполупериодной мостовой схеме на четырех выпрямительных диодах VD1—VD4. Выпрямитель обеспечивает на выходе постоянное напряжение 9 В. Вместо четырех диодов можно использовать одну диодную сборку типа КЦ, которая значительно улучшает технологичность изготовления БП и характеризуется среди других выпрямительных схем улучшенными параметрами постоянного тока. К достоинствам данной мостовой схемы, следует отнести повышенную частоту пульсации выпрямленного напряжения Таблица 2. 10. Моточные данные сетевого понижающего трансформатора питания Т1, примененного в электронном охранном устройстве для приусадебного участка


постоянного тока, хорошее использование габаритной мощности сетевого трансформатора, пониженное обратное напряжение на комплекте выпрямительных диодов. Однако мостовые схемы выпрямления тока имеют и некоторые недостатки. Это, в первую очередь, повышенные потери, более низкий кпд, большое количество примененных диодов, повышенная стоимость изготовления, невозможность установки диодов на одном радиаторе охлаждения без изоляционных прокладок (если не применяется диодная сборка).


Для увеличения выходной мощности выпрямительного устройства можно использовать аналогичные диоды большей мощности. В случае отсутствия на садово-огородном участке сетевого напряжения переменного тока в сторожевом устройстве предусматривается электропитание от встроенного или внешнего автономного источника питания постоянного тока, имеющего выходное напряжение 9 В. Электронная часть охранного устройства собрана на двух ИМС DA1 и DA2 серии К176, которые имеют в своем составе два триггера (выводы 8, 9, 10 и 11, 12, 13); компараторы напряжения и инверторы. В ИМС DA1 компаратор имеет выводы 1, 2 и 3. С такими же выводами работает компаратор ИМС. DA2. Следует заметить, что компаратор в данном случае является устройством, включенным по схеме ИП для сравнения измеряемой величины с эталоном, а инвертор устройством, преобразующим сигнал низкого уровня логического нуля на входе в сигнал высокого уровня логической единицы на выходе и наоборот, что эквивалентно операции отрицания. Использование ИМС данной серии (КМОП) позволяет охранному устройству иметь значительный запас времени эксплуатации от автономного источника электропитания, так как в дежурном режиме потребление энергии не превышает 4 мкА. В дежурный режим работы устройство устанавливается переключателями В1 и В2 типа «тумблер» в зависимости от источника питания. После включения напряжение поступает на конденсатор С5 и начинается его зарядка через резистор R4. В это время на входе первого компаратора напряжения ИМС DA1 (выводы 1 и 2) действует высокий уровень логической единицы, а на его выходе (вывод 3) — низкий уровень логического нуля. До тех пор пока контакты конечных выключателей S1— S4 замкнуты, на выходе инвертора ИМС DA1 (выводы 4, 5, 6) будет высокий уровень и триггер ИМС установится в такое положение, когда на его выходе (вывод 10) будет низкий уровень — уровень логического нуля. В этом случае на выходе группы параллельно включенных инверторов второй ИМС (выводы 4, 5, 6 и 11, 12, 13} появится также низкий уровень, светодиод оптрона VТ4 будет выключен, фотодинистор закрыт и исполнительное устройство К1 обесточено.


Пока конденсатор С4 не зарядится, устройство при замкнутых контактах выключателей S1—S4 находится в режиме подготовки к эксплуатации. Время зарядки конденсатора С4 регулируется в достаточно широких пределах — от 0 до 45 с, в течение которого исполнительное устройство остается отключенным. Если устройство установлено на входной двери, то за указанное время необходимо выйти из помещения и закрыть дверь. Таким образом, в пределах времени зарядки конденсатора С4 контакты переключателей S1— S4 можно размыкать и замыкать сколько угодно раз, при этом состояние триггера первой ИМС не изменится и сигнал тревоги не прозвучит, так как не будет подано напряжение на исполнительное устройство. После зарядки конденсатора С4 до напряжения питания на выходе компаратора первой ИМС DA1 (выводы 1, 2, 3) появится высокий уровень логической единицы и охранное устройство будет готово реагировать на разомкнутое положение контактов переключателей S1—S4. При проникновении на охраняемый объект постороннего лица и размыкании одной пары контактов конечных выключателей S2—S4 первый триггер ИМС переключится, а на выходе (вывод 10) появится высокий уровень логической единицы. С этого момента начинается зарядка конденсатора С5 через резистор R4, в течение которой исполнительное устройство остается включенным. И в это же время начинается зарядка конденсатора С4 и снова триггер не реагирует на изменение состояния контактов S1—S4. Следовательно, закрыванием двери после несанкционированного проникновения внутрь помещения уже нельзя предотвратить подачу сигнала тревоги. После окончания зарядки конденсатора С5 происходит смена логического уровня на выходе компаратора второй ИМС и выходе, включающем оптрон, который в свою очередь включает и приводит в действие ИМ сигнализации. Для того чтобы тревожная сигнализация была отключена, надо в период зарядки конденсатора С4 (20... 45 с) после открывания дверей или другого объекта отключить БП от сети переменного тока или питание от автономной батареи. Выключатели электропитания В1 и В2 необходимо размещать в скрытом от посторонних лиц месте, о котором должны знать только члены семьи или дежурные на объектах охраны. Монтаж сторожевого устройства рекомендуется осуществлять на односторонней печатной плате, размеры которой не превышают 120Х80 мм, использовав для пайки припой марки ПОС-60.


В качестве ИМ К1 может быть использовано реле электромагнитной системы, управляемый магнит, соленоид или другое устройство с электромеханическим приводом. Переключатели S1—S4 с контактными парами могут быть любой конструкции, но они должны быть такими, чтобы их можно было закрепить на дверях или окнах охраняемых объектов. Хорошие результаты могут быть получены при применении магнитоуправляемых контактов, герконовых реле, которые имеют соответствующую арматуру для крепления и установки. Могут быть применены также контакты, широко используемые в промышленных системах охранной сигнализации. Рассматриваемое охранное устройство допускает подключение практически неограниченного числа пар контактов, расположенных в различных частях приусадебного участка. При этом все пары контактов соединяются последовательно. В случае обрыва соединительных проводов от той или иной пары контактов электронное устройство тотчас же подаст сигнал тревоги. Перечень основных покупных комплектующих ЭРИ и ЭРЭ, применяющихся в электронном охранном устройстве, и рекомендации по их замене приведены в табл. 2. 11. Таблица 2.11. Перечень основных комплектующих ЭРИ и ЭРЭ, применяющихся в электронном сторожевом устройстве, и их возможная замена

Окончание табл. 2.11

Основные электрические параметры и технические характеристики электронного охранного устройства для приусадебного участка Номинальное напряжение питающей сети переменного тока, В.......................... 220 или 127 Номинальная частота питающей сети переменного тока, Гц............................. 50 Номинальное напряжение автономного источника питания постоянного тока, В .............. .9 Напряжение на выводах вторичных обмоток сетевого понижающего трансформатора Т1, В: 7 и 8 ............................ .6,3 9 и 10 ............................ .5 10 и 11 ........................... .1,3 Пределы изменения напряжения питающей сети переменного тока, В .................... .187...242 или 110...140 Пределы изменения частоты питающей сети переменного тока, Гц ...................... .49...51 Пределы изменения напряжения автономного источника питания постоянного тока, В ........ .8...12 Количество элементов ХИТ типа А373 в автономном источнике питания, шт ............... .6 Коэффициент нелинейных искажений питающей сети переменного тока, %, не более ......... .12 Коэффициент стабилизации постоянного тока на выходе БП, не менее ................... .120 Максимальное количество охраняемых объектов, шт . . 20 Время задержки срабатывания устройства после размыкания контактов конечных выключателей, с . . 1...45 Ток, потребляемый устройством от сети переменного напряжения в дежурном режиме работы, мА, не более .......................... 10 То же, при работе от автономного источника питания, мкА, не более ................... .20 Максимальная мощность устройства, при работе исполнительных устройств, Вт .............. 15 Сопротивление изоляции токоведущих частей устройства между собой и корпусом, МОм, не менее ......................... 10 Помехозащищенность, устройства при напряженности внешнего электоромагнитного поля, дБ, не менее .....................100 кпд, %, не менее .....................78

Рис. 2.8. Принципиальная схема электронного охранного устройства для приусадебного участка.

ЭЛЕКТРОННОЕ УСТРОЙСТВО ОХРАННОЙ СИГНАЛИЗАЦИИ


2 ЭЛЕКТРОННОЕ УСТРОЙСТВО ОХРАННОЙ СИГНАЛИЗАЦИИ

Рассматриваемое устройство представляет собой ЭСОС, предназначенную для охраны жилых, производственных и хозяйственных помещений, автомобилей, мотоциклов, катеров, сейфов и других ценных объектов и предметов циклического пользования.

Устройство может быть установлено в квартирах жилых домов, производственных зданиях малых предприятий, кооперативах и акционерных обществах, хозяйственных постройках на садово-огородных участках, гаражах и т. д.

ЭСОС создана как комплексное электронно-техническое устройство, обеспечивающее автоматическое срабатывание сигнальных цепей и блоков при несанкционированном вторжении в охраняемый объект и при нарушении звеньев системы охраны. Относительная простота и надежность работы СОС делают ее доступной для повторения в радиолюбительских мастерских и кружках юных техников.

Принципиальная электрическая схема комбинированной ЭСОС приведена на рис. 2. 1. Как следует из принципиальной схемы, ЭУОС состоит из следующих функциональных блоков и узлов: входных цепей, сетевого понижающего трансформатора питания 77, выпрямителя, автономного источника питания GB1, СНПТ, электронного блока управления, выходных цепей, сигнализатора и индикатора. В качестве автономного источника питания может быть использована аккумуляторная батарея GB1 любого типа, обеспечивающая на выходе напряжение 12 В. Входное устройство обеспечивает подключение ЭСОС к сети переменного тока напряжением 220 В частотой 50 Гц с помощью электрического соединителя X1 типа «вилка» и стандартной штепсельной розетки. Плавкий предохранитель F1, установленный на входе устройства, защищает его от коротких замыканий, которые возможны при неправильном монтаже, ошибках при сборке и из-за неисправных комплектующих ЭРЭ. Включение и выключение питания обеспечивается однополюсным переключателем S1, при замыкании контактов которого переменное напряжение подается на первичную обмотку трансформатора Т1. При включении устройства в сеть загорается индикаторная неоновая лампа H1, которую устанавливают на видном месте охраняемого объекта.

Блок выпрямительного устройства включает в свой состав сетевой понижающий трансформатор питания T1 и собственно выпрямитель, собранный по однофазной двухполупериодной мостовой схеме Греца на четырех выпрямительных диодах VD1 — VD4. Примененное выпрямительное устройство характеризуется достаточно полным использованием габаритной мощности сетевого трансформатора, повышенной частотой пульсации выпрямленного напряжения постоянного тока, повышенным кпд устройства, низким обратным напряжением на комплекте выпрямительных диодов, повышенным сроком эксплуатации, но несколько большей стоимостью изготовления.
Диоды выпрямителя должны быть установлены на гетинаксовой плате с распайкой катодов и анодов по схеме, их нельзя установить на общей металлической пластине вместе с сетевым трансформатором без прокладок. Повышенный расход выпрямительных диодов, по сравнению с другими выпрямительными схемами, компенсируется высокой надежностью и долговечностью работы устройства. Сетевой понижающий трансформатор питания 77 изготавливается на броневом магнитопроводе типа Ш, имеет одну катушку, которая устанавливается на центральном стержне магнитопровода, имеющем активную площадь поперечного сечения стали не менее 7 см2. Кроме основной функции сетевой трансформатор обеспечивает гальваническую развязку вторичных цепей устройства от сети переменного тока высокого напряжения и дополнительную электробезопасность при эксплуатации ЭСОС. При изготовлении сетевого трансформатора в домашних условиях необходимо обратить особое внимание на изоляцию обмоточных проводов между слоями и между обмотками, а также обязательную пропитку трансформатора изоляционными лаками. Магнитопровод трансформатора изготавливается методом шихтовки из пластин трансформаторной стали толщиной 0, 25... 0, 5 мм. Первичная обмотка трансформатора рассчитана на подключение к сети переменного тока напряжением 220 В и выдерживает максимальную токовую нагрузку до 3 А. На вторичной обмотке трансформатора действует напряжение переменного тока равное 32, 5 В в режиме холостого хода. Напряжение постоянного тока, снимаемое с полупроводникового выпрямителя, подается на источник стабилизированного напряжения, который представляет собой регулируемый компенсационный стабилизатор последовательного действия. Его выходное напряжение можно плавно регулировать в пределах 5... 30 В при токе нагрузки до 1 А. СИП включает в свой состав РЭ, собранный на тиристоре VD6 (VS1), работающем в ключевом режиме, благодаря чему потери мощности в стабилизаторе очень малы и рассеиваемая тепловая энергия незначительна. Тиристор управляется импульсами, вырабатываемыми релаксационным генератором, собранным на аналоге однопереходного составного транзистора VT2, VT3. Напряжение на выходе стабилизатора определяется разностью фаз импульсов управляющего генератора и полуволн выпрямленного напряжения.


Эта разность напряжений зависит от зарядного тока конденсатора С3, который включен в коллекторную цепь транзистора VT1, выполняющего функцию регулятора постоянного тока. На базу транзистора с движка подстроечного резистора R3 поступает часть напряжения со стабилитрона VD5, а на эмиттер — часть выходного напряжения, снимаемого с делителя R9, R10. Подстроечным резистором R3 устанавливается требуемое напряжение питания в пределах от 5 до 30 В. При уменьшении значения выходного напряжения стабилизатора относительно установленного уровня напряжение на резисторе R9 также уменьшается, а на эмиттерном переходе транзистора VT1 увеличивается открывающее напряжение. В результате его коллекторный ток увеличивается, а конденсатор СЗ начинает заряжаться быстрее. Это приводит к более раннему открыванию тринистора VD6 (VSI), поэтому напряжение на выходе стабилизатора возрастает до прежнего значения. Если же выходное напряжение увеличивается, процесс восстановления заданного уровня напряжения протекает в обратном направлении. Напряжение, снимаемое с транс форматора, обеспечивается коэффициентом трансформации и моточными данными, которые приведены и табл. 2. 3. Электронный управляющий блок ЭСОС является основным устройством, которое представляет собой обычную триггерную схему, собранную на двух ИМС DAI и DA2, пяти транзисторах и шести выпрямительных диодах. В принципиальной схеме управляющего блока ЭСОС собрано устройство против ложных срабатываний. Сигнальная цепь как главная часть электронной системы представляет собой определенный набор микропереключателей и электрических датчиков, которые устанавливаются замаскированно на окнах, дверях, замках, задвижках, переключателях, калитках и т. п. В составе электронного управляющего блока собрано два таймера, обеспечивающих задержку срабатывания охранной системы после размыкания любого микропереключателя и электрического датчика. Первый таймер обеспечивает короткую временную задержку срабатывания ЭСОС, которая достаточна для установления системы в исходное положение, то есть до того, как она будет приведена в действие, когда владелец войдет в охраняемый объект или помещение, разомкнув один из микропереключателей, например на входной двери.


Второй таймер настраивается на определенно заданное время работы звукового или светового сигнализаторов. Принципиальная схема предусматривает возможность устанавливать время работы сигнальной системы от 0 до 5 мин после срабатывания. По истечении заданного времени работы система автоматически отключается и устанавливается в исходное положение независимо от того, замкнута или разомкнута сигнальная цепь устройства. Первый таймер можно настроить на задержку времени срабатывания до 30... 35 с. Работоспособность сигнальной системы восстанавливается в любой момент рабочего цикла специальной кнопкой переключателя S2 типа П2К. При замкнутой сигнальной цепи во включенном состоянии постоянно течет ток, обеспечивающий запуск управляющего устройства. В это время таймеры отключены и не работают. При размыкании сигнальной цепи открывается транзи- Т а б л и ц а 2. 3. Моточные данные сетевого понижающего трансформатора питания Т1, примененного в электронном устройстве охранной сигнализации


стор VT10 на время, устанавливаемое зарядкой конденсатора С8 и сопротивлением резистора R27, в результате чего конденсатор С7 разряжается и первый таймер приводится в действие. Резистор R1 и конденсатор С1 предотвращают срабатывание первого таймера от случайных сигналов, возникающих в сигнальной цепи. В случае многократного размыкания и замыкания контактов микропереключателей в сигнальной цепи первый таймер, не завершив свой цикл, не даст команды на включение второго таймера. Для устранения этого недостатка первая ИМС соединена со второй. После того как первый таймер завершит свой цикл, открывается транзистор VT2 и начинает заряжаться конденсатор С10, запускающий второй таймер. Обе ИМС DA1 и DA2 питаются постоянным стабилизированным напряжением, не превышающим 12... 15 В. Для получения этого напряжения применен биполярный транзистор VT9, который совместно со стабилитроном VD11 и резистором R15 обеспечивает заданное значение напряжения. В схеме использованы транзисторы VT7 и VT8, преобразующие напряжение выходного сигнала второго таймера до значения напряжения на выходе компенсационного стабилизатора.


А транзисторы VT4 и VT5 обеспечивают усиление мощности, достаточное для срабатывания электромагнитного реле. В данной ЭСОС используются широко применяемые комплектующие ЭРИ, которые имеются в продаже. Комплектующие ЭРЭ собираются на печатной плате, изготавливаемой из фольгированного гетинакса или стеклотекстолита толщиной до 2 мм. Печатная плата, сетевой трансформатор питания Т1 и аккумуляторная батарея располагаются на шасси из дюралюминия и закрепляются в пластмассовом или металлическом корпусе, имеющем крышку и лицевую панель. При создании сторожевого устройства применены следующие комплектующие ЭРЭ и ЭРИ: сетевой понижающий трансформатор питании Т1 типа Ш броневой конструкции; ИМС DA1 типа К561ЛА7, DA2 типа К561ЛА7; транзисторы VTI типа МП 114, VT2 — МП114, VT3 - КТ315Г, VT4 — КТ933Б VT5-КТ3102Д, VT6 — КТ3102Д, VT7 — КТ3107Б, VT8 — КТ3102Д VT9 — КТ3102Д, VT10 — КТ3102Д; выпрямительные диоды VD1 — VD4 типа КД202Б, VD7 — КД521А, VD8 — КД521А VD9 - КД223, VD12 - VD15 типа КД521А; тиристор VD6 (VS1) типа КУ201Г; стабилитроны VD5 типа Д814В, VD11— Д814А; светодиод VD10 (HL1) типа АЛ307Б; конденсаторы С1 типа K50-16-16U-22 мкф, С2 — К50-3-50В-10 мкФ, СЗ — К40У-9-0,33 мкФ, С4 — К50-3-50В-2000 мкФ, С5 — К10-7В-50В-1 мкФ С6 — К10-17-40В-Н90-1 мкФ, С7 — К10-17-40В-Н90-1 мкФ С8 — К10-17-40В-Н90-0.1 мкФ, С9 — КМ-6-25В-НЗО-0 1 мкФ С10 — КМ-6-25В-Н90-1 мкФ, СИ — К50-3-25В-10 мкФ; резисторы R1 типа ВСа-0,5-5,6 кОм, R2 — ВСа-0,5-2 кОм, R3 — переменный типа СП3-1б-0,25Вт-6,8 кОм, R4 — ВСа-2-6,2 кОм R5 — ВСа-0,5-6,2 кОм, R6 — ВСа-0,25-10 кОм, R7 — ВСа-025-10 кОм, R8 - ВСа-0,25-10 кОм, R9 — ВСа-0,25-1,5 кОм R10 — ВСа-0,25-4,7 кОм, R11 — ВСа-0,25-1,8 кОм, R12 — ВСа-025-10 кОм, R13 — ВСа-0,25-22 кОм, R14 — ВСа-1-22 кОм R15 — ВСа-0,25-2,2 кОм, R16 - ВСа-0,25-22 кОм, R17 — ВСа-025 10 МОм, R18 — ВСа-0,25-10 МОм, R19 — ВСа-0,25-330 кОм R20 — ВСа-0,25-330 кОм, R21 — ВСа-0,25-2,2 МОм, R22 — ВСа-0,25-10 кОм, R23 — ВСа-0,25-1 МОм, R24 — ВСа-0,25-10 кОм R25 — ВСа-0,25-10 кОм, R26 — ВСа-1-22 кОм, R27 — ВСа-2-10 кОм, R28 — ВСа-2-280 кОм; реле электромагнитное К1 типа РЭС-10; предохранитель плавкий F1 типа ПМ-1-0,5 А; индикаторная лампа Н1 типа ТН-0,2-1; переключатели S1 типа П1Т-1-1, S2 — KПI-1, S3 — Sn типа МП-7; электрический соединитель X1 типа «вилка» с электрическим кабелем длиной 1,5 м; Х2, ХЗ — КМЗ-1; громкоговоритель(сирена) ВА1 типа 0,5 ГД1. При монтаже, регулировке, настройке и ремонте сторожевого устройства могут быть применены другие комплектующие ЭРЭ, не ухудшающие основные электрические параметры и эксплуатационные характеристики ЭСОС.


Например, сетевой понижающий трансформатор питания Т1 может быть заменен трансформатором унифицированной конструкции типов ТА, ТН, ТАН, ТПП, ТС, ТТ; резисторы типа ВСа могут быть заменены резисторами типов МЛТ, ОМЛТ, C1-4, С2-8, МТ, УЛИ. Замена ППП может быть произведена в соответствии с рекомендациями, изложенными выше. В качестве оксидных или электролитических конденсаторов могут быть применены конденсаторы типов К50-3, К50-12, К50-16, К50-20. Нормированные значения климатических и механических внешних воздействующих факторов, условия эксплуатации данного электронного устройства и его основные электрические параметры рассмотрены ниже. Здесь необходимо сказать об установке ИМС на платы, лужение выводов и пайка которых производятся с учетом конструктивных особенностей корпусов ИМС. При установке примененных в сторожевом устройстве ИМС необходимо принять все меры предосторожности, которые должны сводиться к тому, чтобы защитить корпус ИМС от недопустимых деформаций. Чаще всего это. достигается правильной распайкой выводов на заранее подготовленные контактные площадки. Размещение корпусов на печатной плате должно обеспечивать возможность свободного доступа для ее демонтажа. Специальные требования предъявляются к правильному выбору режимов пайки выводов, которые изложены в табл. 2. 4. Качество паяных соединений ИМС не зависит от количества припоя и флюса, скорее наоборот: излишки припоя могут скрыть дефекты соединения, а обилие канифоли или флюса приводит к загрязнению места пайки. Надежное и правильно выполненное паяное соединение характеризуется следующими признаками, которые определяются визуально: паяная поверхность должна быть светлой блестящей или светло-матовой, без темных пятен и посторонних включений, форма паяных соединений должна иметь вогнутые галтели припоя. Через припой должны проявляться контуры входящих в соединение выводов элементов и проводников. Работа с ИМС кроме всего требует специальных мер защиты от повреждений статическим электричеством. Таблица 2. 4.


Режимы пайки выводов микросхем

ЭУОС работает в полуавтоматическом режиме следующим образом. При включенном ЭУОС в сеть переменного тока при наличии автономного источника питания и при замкнутых контактах переключателей S1 и S1.1 оно находится в режиме ожидания. При этом все последовательно соединенные контакты переключателей S3... Sn замкнуты. В это время на выходе ИМС DA2 действует высокий уровень — состояние логической единицы, такой же высокий уровень действует на обоих входах ИМС DA1. При размыкании одного из контактов переключателей S3... Sn вход ИМС DA 1 (вывод 13) переходит в состояние низкого уровня логического нуля, а выход этой ИМС (вывод 12} — в состояние высокого уровня логической единицы. Включенные в цепь резистор R1 и конденсатор С1 защищают управляющее устройство от электромагнитных наводок, которые могут возникнуть в сигнальных цепях. В то время, когда вход ИМС DA1 (вывод 13) находится в состоянии низкого уровня логического нуля, а выход (вывод 12) — в состоянии высокого уровня логической единицы, открывается транзистор VT10, в результате чего конденсатор С7 разряжается и первый таймер приходит в действие. Важно заметить, что таймером называется прибор (устройство), который по истечении заданного промежутка времени может автоматически включать (выключать) ИМ. Время открывания транзистора VT10 определяется емкостью конденсатора С8, а также сопротивлением резистора R27. Для запуска второго таймера вход первой ИМС DA I (вывод 14) подключен к выходу второй ИМС DA2 (вывод 12). Этот выход (вывод 12} находится в состоянии низкого уровня логического нуля до тех нор, пока работает первый таймер. После срабатывания первого таймера выход ИМС DA2 (вывод 12) переходит в состояние высокого уровня логической единицы, транзистор VT6 открывается, конденсатор С10 заряжается и запускается второй таймер. Для установления обоих таймеров в исходное состояние в ЭУОС установлен переключатель S2, нажатие на кнопку которого и замыкание контактов 1 и 2 приводят к быстрой разрядке конденсаторов С7 и С10 через диоды VD7 и VD8. Электронное устройство работает от источника постоянного тока напряжением до 25 В.


Однако ИМС могут работать при напряжении не более 15 В, а оптимальным напряжением в данном случае выбрано напряжение 7, 5 В. При выборе исполнительного устройства — сигнальной сирены — необходимо учитывать, что на него подается напряжение постоянного тока также 25 В. Преобразование повышенного напряжения питания до значения 7, 5 В осуществляется с помощью включенных в схему транзистора VT9, стабилитрона VD11 и резистора R15, а также транзисторов VT7 и VT8. Четыре биполярных транзистора VT4 и VT5, VT7 и VT8 обеспечивают соответственно усиление по мощности, необходимое для срабатывания электромагнитного реле К1 и исполнительных устройств, они обеспечивают преобразование выходного сигнала второго таймера с 7, 5 В до значения напряжения источника питания исполнительных механизмов. Параллельно сетевому источнику питания, работающему от выпрямителя на диодах VD1 — VD4, в схему включен автономный источник электропитания (ХИТ), напряжение которого находится в пределах 12... 20 В. Действует автономный источник питания при отключении электропитания от сети переменного тока, а также при разомкнутых контактах переключателя S1 так, как показано на схеме. Контакты переключателя S1. 1 при этом должны быть замкнуты. Электропитание ЭУОС от автономного источника питания GB1 осуществляется через выпрямительный диод VD16, который закрыт в одном направлении до тех пор, пока напряжение на выпрямителе выше напряжения батареи аккумуляторов. Поэтому оптимальным напряжением электропитания считается напряжение 15 В. Регулировку ЭУОС начинают с проверки напряжения на вторичных обмотках сетевого понижающего трансформатора Т1, далее — на выходе выпрямителя Греца и на выходе стабилизатора компенсационного типа. Проверка ЭУОС в целом не представляет особой сложности. Необходимо проверить наличие напряжения на конденсаторе С4. Если напряжение на конденсаторе отсутствует, то надо проверить работоспособность стабилитрона VD11. Электромагнитное реле К1 позволяет запускать электронную схему и подавать напряжение на сирену ВА1 без перенапряжения конденсатора С4, не увеличивая его номинальную емкость.


Напряжение на светоизлучающий диод подается через регулирующий переменный резистор R11. Основные электрические параметры и технические характеристики электронного устройства охранной сигнализации Номинальное напряжение питающей сети переменного тока, В.................... 220 Номинальная частота питающей сети переменного тока, Гц......................... 50 Номинальное напряжение питания постоянного тока от автономного источника, В........... 12... 15 Пределы изменения напряжения питающей сети переменного тока, В.................... 187... 242 Пределы изменения частоты питающей сети переменного тока, %, не более.............. + _1 Пределы регулирования выходного стабилизированного напряжения, В................. 5... 30 Мощность СИП, Вт, не менее............... 50 Мощность, потребляемая устройством в режиме холостого хода, Вт, не более............... 5 Коэффициент стабилизации напряжения постоянною тока, не менее..................... 150 Коэффициент нелинейных искажений питающей сети переменного тока, %, не более......... 10 Количество одновременно охраняемых помещений и объектов, шт........................ 1... 20 Готовность устройства к эксплуатации после включения в рабочий режим, с............. 0, 5 Время срабатывания ЭУОС после размыкания контактов одного из переключателей охранной цепи, мс, не более....................3 вероятность безотказной работы устройства при риске заказчика в=0, 93............. 0, 97 Срок службы устройства, ч, не менее...... 5000 Электрическая прочность изоляции токоведущих цепей при нормальных климатических условиях эксплуатации, В, не менее................ 500 Электрическое сопротивление изоляции токоведущих частей между собой и металлическим корпусом, МОм, не менее................ 10 Помехозащищенность устройства при напряженности внешнего электромагнитного поля, дБ, не менее............................ 80 кпд, %, не менее........................ 70

Рис. 2.1. Принципиальная схема комбинированной электронной системы охранной сигнализации.

ЭЛЕКТРОННОЕ УСТРОЙСТВО ОХРАНЫ И СИГНАЛИЗАЦИИ НА ОДНОЙ МИКРОСХЕМЕ


6. ЭЛЕКТРОННОЕ УСТРОЙСТВО ОХРАНЫ И СИГНАЛИЗАЦИИ НА ОДНОЙ МИКРОСХЕМЕ

Данное устройство представляет собой электронную сирену с большой выходной мощностью, оповещающую о несанкционированном вторжении в охраняемое помещение. Устройство срабатывает при открывании дверей или окон, на которых установлены конечные выключатели, работающие на замыкание контактов. Оно предназначено для охраны объектов бытового и промышленного назначения, может быть использовано для охраны автомобилей и других различных транспортных средств, если электропитание электронных цепей осуществлять от автономных источников питания, ХИТ или от бортовой электросети этих средств. Например, устройство можно установить на катере, яхте, трейлере и т. д. Простота схемно-технического и конструктивно-технологического решений и минимальное количество широко применяемых комплектующих ЭРИ и ЭРЭ делают это устройство легко доступным для изготовления в радиолюбительской лаборатории. Устройство не критично к применяемым комплектующим ЭРЭ и допускает многочисленные замены деталей и узлов без ухудшения качества работы и эксплуатационных характеристик.

Принципиальная электрическая схема электронного устройства охраны и сигнализации, собранного на одной микросхеме, приведена на рис. 2. 6. Оно включает в свой состав следующие узлы и электронные устройства: входные цепи, сетевой понижающий трансформатор питания самодельной конструкции T1, два выпрямителя напряжения нерегулируемого типа, работающих на емкостные фильтры, два стабилизатора напряжения, на выходе которых действуют постоянные токи 5 и 12 В, блок электронной сирены и АС сигнализации.

Электронное охранное устройство подключается к сети переменного тока напряжением 220 В частотой 50 Гц с помощью электрического соединителя X1 типа «вилка», смонтированного с электрическим кабелем длиной от 1,5 до 2,3 м. На входе устройства установлен плавкий пре.дохранитель F1, защищающий от коротких замыканий во входных цепях, которые могут возникнуть при неправильной сборке и монтаже, а также при использовании некачественных комплектующих ЭРЭ и ЭРИ.

Параллельно первичной обмотке сетевого трансформатора установлен конденсатор С1, который защищает от помех, проникающих в сеть переменного тока.
Емкость конденсатора данного фильтра может быть изменена в два раза от указанного на схеме, а его рабочее напряжение не может быть менее двойного амплитудного значения напряжения сети. В охранном устройстве применен самодельный сетевой понижающий трансформатор питания Т1, который изготавливается на броневом магнитопроводе типа ШЛ и имеет одну катушку. Активная площадь поперечного сечения стали магнитопровода должна быть не менее 4...4,5 см2. Первичная обмотка трансформатора Т1 рассчитана на подключение к сети напряжением только 220 В и имеет повышенную прочность изоляции, выдерживающую испытательное напряжение 500Вэфф. Две вторичные обмотки трансформатора обеспечивают на выходе напряжение переменного тока 9,3 и 22 В в режиме холостого хода. Все обмотки трансформатора питания Т1 изолированы друг от друга, экран выполнен тонким эмалированным проводом, исключающим межвитковое замыкание и заземленным на корпус трансформатора. Трансформатор питания обеспечивает трансформацию высокого напряжения переменного тока; расчетный уровень выпрямленного напряжения, необходимого для электропитания цепей электронной схемы; полную гальваническую развязку вторичных цепей устройства от сети переменного тока; дополнительную электробезопасность эксплуатации устройства. Выпрямительное устройство с выходным напряжением 12 В выполнено на одном выпрямительном диоде VD1 по однофазной однополупериодной схеме, характеризующейся минимальным количеством примененных полупроводниковых диодов, простотой схемного решения, невысокой стоимостью изготовления, несколько пониженной частотой пульсации выпрямленного напряжения постоянного тока, равной частоте питающей сети, недостаточным использованием габаритной мощности сетевого трансформатора питания, подмагничиванием его магнитопровода постоянным током. На выходе выпрямителя установлен емкостный фильтр, собранный на конденсаторе СЗ. Выпрямительное устройство с выходным напряжением постоянного тока на 5 В выполнено на четырех выпрямительных диодах малой мощности VD2—VD5, собранных по однофазной двухполупериодной мостовой схеме, характеризующейся повышенной частотой пульсации выпрямленного напряжения постоянного тока, низким обратным напряжением на комплекте выпрямительных диодов, хорошим использованием габаритной мощности сетевого трансформатора Т1, повышенным падением напряжения на диодах, невозможностью установки однотипных диодов на одном радиаторе охлаждения без изоляционных прокладок, пониженным кпд эксплуатации устройства.


Работает выпрямитель на емкостный фильтр, собранный на конденсаторах С4 и Сб. Стабилизатор напряжения 12 В нерегулируемого параметрического типа собран на стабилитроне VD6 и транзисторе VTI. Стабилизатор напряжения 5 В, также параметрического типа, выполнен на стабилитроне VD7, транзисторах VT2, VT3 и диодах VD8 и VD9. Стабилизатор напряжения 5 В имеет защиту от перегрузок и коротких замыканий в цепях нагрузки. Коэффициент стабилизации напряжения 12 В в три раза ниже, чем у стабилизатора напряжения 5В. Этот стабилизатор обеспечивает электропитание предварительного каскада сигнального устройства, собранного на транзисторах VT4— VT7. Для получения повышенной выходной мощности звукового сигнала в устройство включен оконечный каскад звуковой сирены, собранный на транзисторах VT8— VT11, который получает электропитание от стабилизатора 12 В. Электронная сирена состоит из двух генераторов, собранных на одной ИМС DA1. Первый генератор вырабатывает импульсы фиксированной частоты следования, которая зависит от емкости конденсатора С12 и сопротивления резистора R6. Резистор R5, подключенный к первому выводу ИМС, ограничивает ток на входах ИМС, защищая ее от перегрузок. Электрическая цепь, образованная резисторами R7, R11 и конденсатором С9, формирует пилообразное напряжение, управляющее частотой второго генератора. Номинальные значения сопротивлений и емкости этой цени определяют скорость нарастания и спада частоты звучания электронной сирены, а от соотношений номиналов сопротивлений резисторов R7 и R11 зависят пределы ее изменения. Тональность электронной сирены определяется вторым генератором, выводы ИМС 8...11 Частота следования импульсов второго генератора и их длительность зависят от значений сопротивлений резисторов R9, R10 и емкостей конденсаторов С10 и С11. Предварительный каскад усилителя мощности выходного сигнала собран по схеме эмиттерных повторителей на транзисторах VT4—VT7. При включении сигнального устройства в сеть переменного тока схема переходит в режим ожидания и срабатывает после замыкания любых контактов переключателей S2—S5. Эти переключатели устанавливаются в различных местах охраняемых объектов, и по возможности скрытно. Выходную мощность устройства можно увеличить в 1,5...1,6 раза за счет второго каскада усилителя звуковой частоты, собранного на транзисторах VT8—VT11. В электронном устройстве охраны и сигнализации применяются следующие комплектующие самодельные и покупные изделия и ЭРЭ: сетевой понижающий трансформатор питания Т1 типа ШЛ броневой конструкции; ИМС DA1 типа К176ЛА7; транзисторы VT1 типа КТ602Б, VT2 — П217Б, VT3 — П307, VT4 — КТ315Б, VT5 — КТ361Б, VT6 — КТ315Б, VT7 — КТ361Б, VT8 — КТ816А, VT9 — КТ817А, VT10 — КТ817А, VT11 — КТ816А; выпрямительные диоды VD1 типа КД504А, VD2—VD5 типа КД202В, VD8 — Д223, VD9 — Д223; стабилитроны VD7 типа КС147А, VD6 — Д813; конденсаторы С1 типа МБМ-П-бЗОВ-0,01 мкФ, С2 — К71-4-ЦП-0,1 мкФ, СЗ — К50-6-25В-330 мкФ, С4 — К50-6-16В-2000 мкФ, С5 — К50-6-16В-500 мкФ, С6 — К50-3-16В-2000 мкФ, С7 — К50-12-6.3В 680 мкФ, С8 — К50-ЗБ-6В-1000 мкФ, С9 — К50-ЗБ-6В-16 мкФ, С10-К73-9-510 пФ, СИ — К73-9-510 пф; резисторы R1 типа ВСа-0,25-1,5 кОм, R2 — ВСа-0.25-330 Ом, R3- ВСа 0,25-510 Ом, R4- ВСа-0,25-220 Ом, R5- ВСa- 0,125- 1,0 МОм, R6 - ВСа-0,125-1,0 МОм, R7 -- ВСa- 0,125- 100 кОм, R8 ВСа-0,125-220 Ом, R9 - ВСа-0,125-1,0 МОм, R10- ВСа -0,125-1,0 МОм, R11 — ВСа-0,125-51 кОм; предохранитель плавкий F1 типа ПМ-1-0,5 А; переключатели S1 типа П1Т- 1- 1, S2- S5 чипа МП-1-1; громкоговорители (динамические головки) ВА1-ВАЗ типа 0.5ГД-50; электрический соединитель X1 типа «вилка» с электрическим кабелем с двойной изоляцией длиной 1,5...2,3 м. При монтаже, регулировке и ремонте электронного устройства охраны и сигнализации некоторые комплектующие изделия и ЭРЭ могут быть заменены аналогичными, не ухудшающими его основные электрические параметры и эксплуатационные характеристики.


Например, ИМС типа К176ЛА7 может быть заменена на микросхему типов К561ЛЕ5, К176ЛЕ5; резисторы типа ВСа можно заменить на резисторы типов МЛТ, ОМЛТ, МТ, УЛИ, С1-4; конденсаторы типа К50-6 — на К50-3, К50-12, К50-16, К.50-20; выпрямительные диоды типа КД202В — на Д237А, Д226Г. Моточные данные самодельного сетевого понижающего трансформатора питания Т1, примененного в электронном устройстве, приведены в табл. 2.8. Таблица 2.8. Моточные данные сетевого понижающего трансформатора питания Т1, примененного в электронном устройстве охраны и сигнализации на одной микросхеме


Основные электрические параметры и технические характеристики электронного устройства охраны и сигнализации на одной микросхеме Номинальное напряжение питающей сети переменного тока, В......................... 220 Номинальная частота питающей сети переменною тока, Гц ............................ 50 Стабилизированное напряжение постоянного тика на выходе стабилизаторов, В .............. 5 и 12 Пределы изменения напряжения питающей сети переменною тока, % .................... —15...+10 Пределы изменения частоты питающей сети переменного тока, %....................... ± 1 Коэффициент нелинейных искажении питающей сети неременного тока, %, не более ......... 12 Коэффициент стабилизации выходного напряжения постоянного тока, не менее: 5 В .............................. 100 12 В ............................. 150 Амплитуда пульсации выпрямленного напряжения постоянного тока, мВ, не более ............. 15 Выходное напряжение на выводах обмоток сетевого трансформатора питания Т1, В: 3 и 4 .......................... .22 5 и 6 .......................... .9,3 Ток, потребляемый устройством в режиме холостого хода, мА, не более ..................... 5 Мощность, потребляемая устройством от сети во время работы сирены, Вт, не менее .......... 50 Время срабатывания устройства после замыкания контактов, мс, не более .................. 5 Количество одновременно охраняемых объектов, шт ............................... 2...12 Время непрерывной работы сигнала тревоги после замыкания контактов, мин, не менее ..... 40 Сопротивление изоляции токоведущих частей устройства между собой и между проводниками и корпусом, МОм, не менее ............... 10 Срок службы устройства, ч, не менее .......... 5000 Вероятность безотказной работы при риске заказчика в =0,92, не менее ............... 0,98 Помехозащищенность устройства в металлическом корпусе при воздействии внешнего электромагнитного поля, дБ не менее ............... 100 кпд, %, не менее ........................ 85

Рис. 2.6. Принципиальная схема электронного устройства охраны и сигнализации на одной микросхеме.

ЭЛЕКТРОННЫЕ ОХРАННЫЕ УСТРОЙСТВА, СИГНАЛИЗИРУЮЩИЕ ОБ ОТКРЫВАНИИ ВХОДНЫХ ДВЕРЕЙ ПОМЕЩЕНИЙ


Существует много простых, надежных и долговечных электронных устройств, которые сигнализируют о нежелательном открывании дверей или окон. Самым простым и в то же время безотказным решением задачи охраны является применение микропереключателей, позволяющих разрывать или замыкать электрические цепи как в режиме холостого хода, так и в режиме рабочей нагрузки (некоторые их типы см. в табл. 3. 3). В отличие от простого электрического переключателя герметичный контакт (геркон), переключаемый постоянным магнитом, без сложных переделок и изменений можно использовать только для включения или выключения сторожевых устройств. В этом случае при открывании двери или окна геркон должен переходить, из одного конечного состояния в другое.

Существует большое количество вариантов установки переключателей, среди них наиболее интересные — со скользящими контактами. При открывании двери или створок окна контакт в скользящем переключателе испытывает воздействие электромагнитного поля. Это дает возможность производить запуск сигнального устройства, в котором применен триггер, срабатывающий при открывании дверей даже на очень короткое время. При этом необходимо учитывать, что если триггер находится на значительном расстоянии от контакта, установленного на двери, следует предусмотреть в схеме устройства монтаж электрической цепочки тина RC на входе триггера для предотвращения ложных срабатываний.

Важное значение для устойчивой работы охранных устройств имеет качество и надежность срабатывания конечных выключателей и контактов. Открытые контакты всегда подвержены воздействию внешних атмосферных факторов и нагрузок, среди которых особенно опасной является повышенная относительная влажность окружающей среды. Поэтому через контакты конечных выключателей должен течь лишь минимально допустимый ток или должно подаваться определенное минимально допустимое напряжение для предотвращения искрения и образования на поверхностях этих контактов нагара.

При изготовлении ЭУОС и при прокладке электрических цепей от электронных блоков и пультов управления до замыкающих и размыкающих контактов необходимо выполнять строго определенные правила и рекомендации.
Например, электрический переключатель, рассчитанный на максимальный ток 10А, допускает минимальный ток 100мА, если речь идет о замыкающих контактах. Но в принципе можно следовать такому проверенному практикой правилу: контактные устройства, предназначенные для меньших максимально допустимых токов, наиболее пригодны для небольших рабочих токов. Это необходимо учитывать также тогда, когда пружины контактов переключателей играют роль и самих контактов. При этом рекомендуется предусмотреть в схеме параллельное резервирование для нормально разомкнутых контактов. Но ток в этом случае распределяется между несколькими контактами. Для монтажа схем с нормально замкнутыми контактами более целесообразным является последовательное резервирование, обеспечивающее предотвращение возможного залипания контактов. Тогда из нескольких последовательно включенных контактов сработает по меньшей мере один. При протекании токов до 10мА необходимо учитывать также переходное сопротивление контактов, которое иногда является решающим фактором для надежной работы всего охранного устройства.В некоторых контактных парах это сопротивление может достигнуть десятков Ом. Используемые в электронных схемах контакты герметичных типов имеют преимущества перед открытыми контактами, так как связаны с ограничением минимального тока, который иногда не превышает 1 мА, простотой установки и высокой надежностью срабатывания. Постоянные магниты, необходимые для таких контактов, можно использовать от магнитных защелок, применяемых при изготовлении мебели. Если контакты, устанавливаемые на дверях или окнах, расположены на значительном расстоянии от БЭ, пульта управления или от источника электропитания, то потребуется надежная профессиональная прокладка соединительных проводов. Для начинающих радиолюбителей эта работа должна всегда оставаться на первом месте и тщательно выполняться, особенно в тех случаях, когда проводка предназначена для передачи высокого напряжения переменного тока 220 В. Рекомендуется домашним мастерам с первых же самодельных, а также покупных УОС вести запись всех линий проводки и проводников в квартире, доме на приусадебном участке или в других помещениях с указанием места и направления прокладки, а также цвета проводов и типа соединений.


Это правило обеспечивает максимально возможную электробезопасность и условия устойчивой и долговечной работы самодельных ЭУОС. На садово-огородных участках для соединения проводниками всех контролируемых объектов и отдельных мест, расположенных как по периметру охраняемого участка, так и внутри дома, можно рекомендовать последовательное включение датчиков и конечных выключателей, что потребует лишь одной линии связи. Но при этом контактные пары должны быть нормально замкнутыми. При разрыве какого-либо из этих контактов срабатывает сигнализация, однако информация о том, в каком месте произошел разрыв, отсутствует. При установке нормально разомкнутых контактов по месту необходимо применить один двухжильный провод. Но и в этом случае неизвестно, в каком месте сработал контакт. Рассматриваемые УОС с большим количеством конечных выключателей и контактных пар менее критичны к воздействию различных условий эксплуатации, если они реализуются на базе малых или больших ИМС, а контакты соединяются в группы и подключаются к входам одной микросхемы. Однако это лучше делать только после того, как начинающим радиолюбителем будет собрано достаточно большое количество разнообразных РЭУ и приборов. Необходимо учитывать, что при прокладке длинных соединительных линий, подключаемых к ИМС, легко происходят ложные срабатывания и приходится принимать дополнительные меры защиты: например, при использовании нормально разомкнутых контактов емкость конденсаторов должна быть большой величины, чтобы импульс тока их зарядки не приводил бы к залипанию контактов; в этом случае лучше применять лакопленочные конденсаторы емкостью не менее 1мкФ. Используя важнейшие и специальные свойства ИМС, в частности логической системы И-НЕ или 2И-НЕ, и поступление на ее входы потенциалов высокого уровня логической единицы, через которые текут очень маленькие токи, можно собрать на базе таких ИМС охранные устройства со световой сигнализацией на малогабаритных индикаторных лампочках, напряжения питания которых не превышают 5...6В, а ток на них не превышает 50мА.


Сегодня очень часто в электронных схемах применяются вместо лампочек накаливания светодиоды, которые включаются через балластные резисторы. Большинство схем включения светодиодов содержат конденсаторы емкостью до 0,01мкФ и рассчитаны таким образом, что при срабатывании какого-либо контакта происходит передача сигналов на элементы микросхемы, благодаря чему загорается светодиод или лампочка накаливания, включенная между этим входом и плюсовым проводником схемы. На выходе такой ИМС низкий уровень логического нуля сменяется высоким уровнем логической единицы. Эта смена сигнала на выходе микросхемы используется или непосредственно для управления


Рис.2.14. Принципиальная схема устройства охраны с сигнализацией на одной микросхеме. входом транзистора n-р-n-структуры, или после инвертирования для управления работой генератора. На рис. 2. 14 приведена принципиальная электрическая схема устройства охраны с сигнализацией, собранного на одной ИМС. Это устройство предназначено для оповещения о состоянии входных дверей или окон, об их открывании и закрывании. Разработано устройство охраны для установки в домах и хозяйственных постройках бытового и производственного назначения, но область применения его может быть расширена по желанию домашнего мастера, учитывая возможности электронной схемы, тем более что в качестве датчиков могут быть использованы герметичные нормально замкнутые контакты, удерживаемые постоянным магнитом, самодельные конечные выключатели, унифицированные микропереключатели типа МП-1 и другие переключатели. Как видно из схемы, оксидный конденсатор С1 является конденсатором задержки срабатывания и включен параллельно датчику-контакту, замкнут накоротко через резистор R1, предназначенный для предотвращения перегрузки импульсов тока этого конденсатора при его разрядке. При замкнутых контактах конечного выключателя в режиме ожидания охранного устройства на выходе ИМС DAI (выводы 1 и 2} действует низкий уровень логического нуля, в это же время на выходе ИМС (вывод 3) действует высокий уровень логической единицы.


Надо заметить, что ИМС, использованная в устройстве, включает в себя четыре логических элемента 2И-НЕ, которые имеют соответствующие входы и выходы. Первый элемент схемы имеет выводы 1, 2 и 3; второй — 4, 5 и 6; третий — 8, 9 и 10; четвертый — 11, 12 и 13. В режиме ожидания или холостого хода на выводе 4 (выход второго элемента ИМС) действует низкий уровень логического нуля; на выводе 10 (выход третьего элемента) действует высокий уровень, логической единицы и на выводе 11 ИМС (выход четвертого элемента) действует низкий уровень логического нуля. Вследствие этого транзистор VT1, подключенный к выходу 11 ИМС схемы через резистор ограничения тока, заперт. При размыкании контактов конечного выключателя S1 начинается зарядка конденсатора С1 в течение заданного промежутка времени, который определяется номинальными значениями сопротивления резистора R2 и емкости конденсатора С1. Резистор R2 рассчитан на номинальное сопротивление 100кОм, которое можно изменять, меняя время задержки подачи сигнала открывания дверей охраняемого объекта в широких пределах. При некотором оптимальном значении напряжения на конденсаторе С1 включается в работу тактовый генератор, собранный на первых двух элементах ИМС DA1 (выводы 1—б), вызывая подачу сигналов низкой частоты на вторую часть ИМС DA1, и начинают вырабатываться импульсы звуковой частоты, которые поступают на транзистор VT1, усиливаются и передаются на звукоизлучатель: громкоговоритель ВА1 или телефонный капсюль. Телефонный капсюль, примененный в устройстве, может быть выбран из числа электромагнитных типа ТА-4, ДЭМ-4М, ТК-67. Сторожевое устройство, собранное по указанной принципиальной схеме (рис.2.14), позволяет открывать и закрывать входные двери и окна без подачи звукового сигнала в период определенного времени. Конденсатор задержки подачи звукового сигнала можно включать и выключать с помощью однополюсного переключателя, который может быть введен в принципиальную схему, а на практике установлен в недоступном и скрытом от посторонних лиц месте.


Такой же результат можно получить за счет отключения резистора, подсоединенного со стороны плюсового вывода источника питания GB1. При сборке и регулировке охранного устройства использованы следующие покупные комплектующие ЭРИ и ЭРЭ: ИМС DA1 типа К176ЛА7; конденсаторы С1 типа К50-6-6,ЗВ-100мкФ, С2 — К53-1-6.3В-0.5 мкФ, СЗ — К10-7В-25В-680пФ; резисторы R1 типа МЛТ-0,25-100Ом, R2 — СПЗ-4М-0, 25Вт-100 кОм,

Рис 2.15. Принципиальная схема устройства охранной сигнализации. R3 -- МЛТ-0,25-1 МОм, R4 — МЛТ-0,25-1 МОм, R5-МЛТ-0,25-1 кОм, R6 — МЛТ-0,25-1 МОм, R7 — МЛТ-0,25-1МОм; транзистор VT1 типа КТ342А; выпрямительный диод VD1 типа Д237А; ХИТ GB1 типа 3336 или три элемента типа 373, «Орион-М». Электропитание охранного устройства осуществляется от автономного источника постоянного тока напряжением 4,5 В. Простота устройства при правильной сборке и монтаже обеспечивает ему надежную работу без дополнительной настройки и регулировки. Большое значение имеет качество комплектующих ЭРЭ и ЭРИ. На рис.2.15 приведена принципиальная электрическая схема устройства охранной сигнализации, разработанная на одной ИМС и работающая аналогично рассмотренной выше. Эта принципиальная схема имеет меньшее количество комплектующих ЭРЭ, основным из которых также является ИМС, выполненная по КМОП-технологии. Данная ИМС в соответствии с принятой классификацией относится к числу логических схем и включает в свой состав четыре функциональных элемента типа 2И-НЕ. Она характеризуется высокими электрическими параметрами и незначительным потреблением электроэнергии. Напряжение электропитания ИМС равно 9 В±5%; ток потребления в состоянии логического нуля не превышает 2X10^(-4)мА; а в состоянии логической единицы — также не более 2X10—4мА; задержка включения и выключения ИМС не превышает 80 нс. К серии этих ИМС относятся следующие типы: К176ЛА7, К164ЛА7, К561ЛЛ7, К564ЛА7. Электропитание устройства осуществляется от ХИТ батареи типа 3336 или любых трех последовательно соединенных элементов типа 316, 332, 343, 373, «Планета», «Сатурн». Транзистор VT1, включенный на выходе ИМС, выполняет функцию усилителя мощности.


При замкнутых контактах переключателя S1 или если включить на выходе устройства переменный резистор (на схеме показан пунктирной линией), плюс питающего напряжения попадает на внутреннюю шину ИМС через один из диодов, минуя вывод 14. Следует заметить, что ИМС DA1 работает без подключения к выводу 14 источника питания от батареи GB1. После замыкания контактов S1 включается в работу первый ждущий мультивибратор, собранный на двух элементах ИМС (выводы 1, 2, 3, 4, 5, 6), который начинает вырабатывать прямоугольные импульсы, следующие с частотой 3 Гц. С выхода первого мультивибратора (вывод 4) эти импульсы поступают на вход второго мультивибратора (вывод 8), и он включается в работу и начинает вырабатывать импульсы частотой до 3000 Гц. В громкоговорителе или телефоне ВА1 слышится звук, который можно изменять переменным резистором R5. При изготовлении данного устройства применены следующие комплектующие ЭРИ и ЭРЭ: транзистор VT1 типа КТ315Г: ИМС DA1 типа К176ЛА7; резисторы R1 типа МЛТ-0,25-300 кОм, R2 — МЛТ-0,25-330кОм,R3—МЛТ-0,25-270кОм R4—МЛТ-0,25-15кОм,R5—СПЗ-1-0,25Вт-100кОм;телефон ВА1 типа ДЭМШ или ДЭМ-4М; переключатель S1 типа МП-1-1; электрические соединители X1— Х4 типа КМЗ-1 приборные; конденсаторы С1 типа К73-17-63В-1 мкФ, С2 — К10-7В-50В-М1500-1000 пФ. Правильно собранное охранное устройство начинает работать сразу же после сборки и ни регулировки, ни настройки не требует. Необходимо заметить, что устройство не критично к выбору номиналов резисторов и конденсаторов. При их изменениях меняется тональность звуковых колебаний в громкоговорителе.

ЭЛЕКТРОННЫЙ СТОРОЖ ДЛЯ САДОВО-ОГОРОДНОГО УЧАСТКА


Садово-огородные участки и приусадебные территории, расположенные вдали от централизованных пунктов охранной сигнализации и ЦПУ, удаленные от городов и городских поселков, где, как правило, находятся мощные и постоянно действующие подразделения охраны, а также отдельные садовые участки в больших массивах различных овощеводсв и садоводств, занимающих общую площадь в несколько десятков и сотен гектаров, требуют специальных мер защиты. Этот вопрос охраны особенно актуален в период созревания плодово-ягодных и овощных культур, когда хищения созревшего урожая становятся иногда массовым явлением.

Некоторые садоводства, объединенные в крупные товарищества, организуют совместную охрану территории с привлечением сотрудников милиции и других охранных структур. Однако их сторожевые посты находятся далеко не только друг от друга, но и от охраняемых участков, и в этом случае без специальных охранных устройств очень трудно осуществлять эффективную защиту в первую очередь жилых домов и хозпостроек.

Для решения этой проблемы все приведенные в справочнике электронные устройства достаточно надежны и долговечны, но сложны в изготовлении и эксплуатации. Рассматриваемые ниже электронные и релейные автоматы позволяют создавать системы, защищающие сады и огороды, так как могут быть установлены не только по периметрам участков, но и локально в одном или нескольких наиболее уязвимых местах. Например, вокруг плодовых деревьев (яблонь, груш, слив), грядок с клубникой, около кустов черной смородины и т. д. В этом случае в качестве основного охранного элемента схемы используется шлейф, изготавливаемый из тонкого обмоточного провода, который при обрыве дает сигнал на электронный блок охранного устройства.

Принципиальная электрическая схема электронного охранного устройства для охраны садов и огородов, собранного на ППП, приведена на рис. 2. 16. Схема включает в свой состав сетевой понижающий трансформатор питания Т1 унифицированной конструкции, выпрямительное устройство, стабилизатор напряжения регулируемого типа, триггер Шмитта, входные и выходные цени и шлейф.
В конструкции охранного устройства можно выделить также самостоятельные сборочные единицы: БП, БЭ и устройство сигнализации. Блок питания представляет собой законченную конструкцию, функции которой в радиолюбительской практике могут быть значительно расширены за счет его универсального выходного стабилизированного напряжения 12 В. Но следует заметить, что выходное напряжение можно регулировать переменным резистором R5 в достаточно широких пределах. БП можно использовать для электропитания различной радиолюбительской аппаратуры, радиоэлектронных устройств и приборов промышленного изготовления. На входе устройства собран емкостный фильтр на конденсаторах С1 и С2, которые защищают устройство от низкочастотных помех, проникающих в сеть электропитания переменного тока. Конденсаторы фильтра соединены последовательно, с заземлением средней точки. Здесь же на входе установлен плавкий предохранитель F1, защищающий входные цепи устройства от перегрузок и коротких замыканий, которые могут возникнуть при ошибках в монтаже, при сборке из непроверенных комплектующих элементов, из-за случайных замыканий в токопроводящих частях. Плавкий предохранитель рассчитан на максимальный ток до 1 А. В номинальном режиме работы используется предохранитель на ток срабатывания 0, 5 А. Неоновая лампочка HI тлеющего разряда сигнализирует о подаче переменного напряжения на сетевой трансформатор после включения питания переключателем S1. Гасящее сопротивление резистора R1 обеспечивает равномерное свечение лампы H1 и предохраняет от бросков напряжения. В сторожевом устройстве применен сетевой унифицированный трансформатор питания Т1 серии ТН. Трансформатор имеет пять обмоток: две первичные и три вторичные. Первичные обмотки рассчитаны на подключение к сети переменного тока напряжением 110, 127, 220 и 237 В частотой 50 Гц. На рис. 2. 14 показано включение первичных обмоток на напряжение 220 В. Для включения трансформатора в сеть переменного напряжения 127 В необходимо соединить выводы 1 и 4, 3 и 6, а напряжение подать на выводы 1 и 3 или 4 и 6. Сетевой трансформатор питания необходим не только для трансформации напряжения до низких значений, но и для полной гальванической развязки первичной сети высокого напряжения переменного тока от вторичных цепей БЭ,а это значительно повышает электробезопасность эксплуатации и позволяет производить наладочные работы при включенном в сеть устройистве.


Конечно, при этом должны строго соблюдаться все меры предосторожности и выполняться все правила безопасности. Вместо покупного трансформатора в сторожевом устройстве можно применить самодельный трансформатор, собранный в домашней мастерской. Такой трансформатор изготавливается на броневом или стержневом магнитопроводе типа Ш или ШЛ и реже ПЛ. Самодельный трансформатор питания можно выполнить по данным, приведенным в табл. 2.16. При этом можно изготовить простой двухобмоточный трансформа тор с одной первичной и одной вторичной обмотками Первичная обмотка рассчитана на подключение к сети переменного тока напряжением 220 В, а на вторичной обмотке в этом случае действует переменное напряжение 15 В при холостом ходе. Таблица 2.16. Моточные данные сетевого понижающего трансформатора питания Т1, примененного в электронном стороже для приусадебного участка


Примечание: вместо самодельного трансформатора могут быть использованы унифицированные трансформаторы типов ТН4-127/220-50,ТНЗ 1-127/220-50, ТН34-127/220-50. ТПП-127/220-50, ТПП224-127/220-50. Особое внимание при изготовлении самодельного трансформатора необходимо обратить на повышение со противления изоляции не только обмоточных проводов, но и на сопротивление изоляции между витками, обмотками и рядами. Как правило, при изготовлении трансформаторов используется рядовая укладка проводов, и крайне редко — универсальная, поэтому необходимо изолировать друг от друга каждый ряд обмоточного провода. Хорошие результаты можно получить при пропитке катушки трансформатора изоляционными лаками. Между обмотками трансформатора укладывается один ряд обмоточного провода, один конец которого заземляется на магнитопровод. При укладке этого ряда, являющегося экраном, необходимо усилить изоляцию между обмотками. На выводах унифицированного трансформатора в режиме номинальной нагрузки действует переменное напряжение: 6,3 В (выводы 7 и 8, обмотка II), 5/6,3 В (выводы 9, 10 и 11, обмотка ///), 6,3 В (выводы 12, 13 и 14, обмотка IV). Для получения на выходе трансформатора переменного напряжения 16,3В выводы обмоток соединены между собой последовательно, с соблюдением правила намотки.


Начала намотки на схеме обозначены точками. На выходе трансформаторных обмоток собрано выпрямительное устройство, выполненное на четырех диодах и двух оксидных конденсаторах. Выпрямитель выполнен по однофазной двухполупериодной мостовой схеме на диодах VD1—VD4 и имеет как положительные, так и негативные свойства. К положительным относятся: повышенная частота пульсации выпрямленного напряжения постоянного тока, пониженные значения обратного напряжения на выпрямительных диодах, хорошее использование габаритной мощности сетевого трансформатора питания Т1. К негативным: более высокие потери, пониженный кпд, невозможность установки диодов на металлическом радиаторе охлаждения без изоляционных прокладок, повышенная стоимость изготовления и повышенный расход выпрямительных диодов. Работает выпрямитель на емкостную нагрузку, составленную из электролитических конденсаторов большой емкости С1 и С2. Выпрямленное напряжение постоянного тока подается на стабилизатор напряжения, собранный на транзисторах VT1, VT2 и стабилитроне VD5. Стабилизированное напряжение 12 В устанавливается подстроечным резистором R5. Стабилизатор напряжения состоит из РЭ па транзисторе VT1, УПТ на транзисторе VT2, источника опорного напряжения на стабилитроне VD5, резисторов R2—R6, обеспечивающих режимы работы транзисторов, и выходного электролитического конденсатора С4. Следует заметить, что УПТ в стабилизаторе может питаться от дополнительного источника (например, ПСН). Стабилизированное напряжение питания подается на БЭ сторожевого устройства в точках А и Б. В этих точках действует напряжение постоянного тока 12В. Если домашний мастер захочет сдублировать электропитание или подключить резервный источник в виде ХИТ, то конструктивно точки А и Б необходимо выполнить как приборные разъемные соединения. Универсальное напряжение постоянного тока 12В позволяет питать сторожевое устройство от бортовой сети автомобиля, и применение его в этом случае может стать надежным дублирующим устройством для охраны любого транспортного средства.


Вместо светового индикатора можно легко приспособить любой другой ИМ, срабатывающий при напряжении 12В и потребляющий ток нагрузки до 1 А. Электронный блок сторожевого устройства представляет собой триггер Шмитта, вход которого соединен со шлейфом с помощью электрических соединителей Х2 и ХЗ. В соответствии с классификацией электронных устройств триггер является переключающим устройством, которое может любое время сохранять одно из двух своих состояний устойчивого равновесия и скачкообразно переключается по электрическому сигналу из одного состояния в другое. Электронный блок собран на четырех транзисторах, одном диоде, одном конденсаторе С5 и резисторах, обеспечивающих необходимые режимы работы этих транзисторов как в режиме ожидания, так и в режиме подачи тревожных сигналов. Шлейф, прокладываемый по периметру охраняемой территории, изготавливается из тонкого обмоточного провода с медной жилой диаметром до 0,15 мм. Можно применить провод марки ПЭЛ, ПЭВ-1, ПЭВ-2. Срабатывает устройство при обрыве провода шлейфа, при этом транзистор VT6 открывается. В исходном состоянии транзисторы БЭ закрыты и сигнальная лампа Н2 не светится. После открывания транзистора VT6 импульс тока переключает триггер Шмитта в состояние, при котором открывается транзистор VT3 и лампа Н2 загорается. При изготовлении стороженого устройства для приусадебного участка использованы следующие комплектующие покупные ЭРИ и ЭРЭ: транзисторы V'T1 типа П213Б, VT2 МП37Б, VT3 - П217А, VT4 МП37, VT5 - MП37, VT6 МП37; выпрямительные диоды VD1—VD4 типа КД202Р, VD6 - Д220; стабилитрон VD5 типа Д814А; конденсаторы С1 типа МБМ-11-750В-0,01 мкФ, С2 - МБМ-II-750В-0,01мкФ, C3 К50-6-25В-1000 мкФ, С4 К50-6-16В-1000 мкФ, С:5 К50-6-16В-68 мкФ; резисторы R1 типа МЛТ-0,5-200 кОм, R2 МЛТ-0,5-4 7 кОм, R3— МЛТ-0,5-360Ом, R4 — МЛТ-0,5-390 Ом, R5 СП4-2Ма-0,5Вт-1,5 кОм, R6 — МЛТ-0,5-120 Ом, R7 -МЛТ 05-510 Ом, R8 — МЛТ-0,5-200 Ом, R9 — МЛТ 1 2,2 кОм, R10 — МЛТ-0,5-7,5 кОм, R11 — МЛТ-0,5-910 Ом, R12 — МЛТ-0,5-120 Ом, R13 — МЛТ-0,5-15 кОм, R14 — МЛТ-0,5-6,8 кОм, R15 — МЛТ-0,5-6,8 кОм, R16 — МЛТ-1-13 кОм, R17 — МЛТ-1-10 кОм; индикаторные лампы H1 типа ТН-0,2-1, Н2 — МН-12В-0.5А; электрические соединители X1 типа «вилка» с электрическим кабелем длиной 1,5 м и с двойной изоляцией; Х2, ХЗ типа КМЗ-1 приборные; переключатель однополюсный S1 типа П1Т-1-1; плавкий предохранитель F1 типа ПМ-1-1 А; контакты приборные А и Б для подключения автономного источника питания. При настройке, регулировке и ремонте сторожевого устройства можно применить другие комплектующие элементы, предварительно проверенные на соответствие требованиям ТУ.


Вместо резисторов типа МЛТ можно применять резисторы типов ВС, ВСа, МТ, ОМЛТ, УЛИ, БП, С2-14, БЛП, БЛПа, С2-10 и другие, конденсаторы типа К50-6 можно заменить на конденсаторы типов К50-3, К50-12, К.50-16, К.50-20 и другие, выпрямительные диоды типа КД202Р — на диоды типов меньшей мощности, например КД226Г, КД205А, Д237В; стабилитрон типа Д814А — на Д814Б, Д815Г, КС156А. Транзисторы, указанные на схеме, могут быть заменены в соответствии с рекомендациями, которые приведены в первой главе справочника. Основные электрические параметры и технические характеристики электронного сторожа для садово-огородного участка Номинальное напряжение питающей сети неременного тока, В ....................... 220 или 127 Номинальная частота питающей сети неременного тока, Гц .......................... 50 Номинальное напряжение автономного источника электропитания постоянного тока, В ......... 12 Стабилизированное напряжение постоянною тока на выходе БП и контрольных гочках А и Б, В, не более ................... . ..... 12 Коэффициент нелинейных искажений питающей сети переменного тока, %, не более ....... 12 Коэффициент стабилизации, не менее . . ..... 150 Пределы изменения напряжения питающей сети переменного тока, В ................. 187...242 или 110...140 Пределы изменения частоты питающей сети неременною тока, Гц ..................... 49,5...50,5 Пределы изменения напряжения автономною источника питания, при которых сохраняется работоспособность устройства без срывов, В .... 9...14 Напряжение на входе выпрямительного устройства в режиме холостого хода, В ............... 16,3 Количество одновременно охраняемых объектов, шт . 1 Время срабатывания устройства при обрыве провода шлейфа, мс, не более ................ 10 Максимально потребляемый ток, А ........... 1 Номинальный ток нагрузки в режиме холостого хода, мА, не более ..................... 45 Переменная составляющая (пульсации) напряжения на выходе в точках А и Б, Вэфф, не более . . 0,14 Изменение напряжения на выходе стабилизатора при изменении напряжения сети от 187 до 242 В, В, не более .......................... 0,6 Срок службы, ч, не менее ................. 5000 Вероятность безотказной работы устройства при риске заказчика в=0,95, не менее ......... 0,99 Сопротивление изоляции токоведущих проводников относительно корпуса БП, МОм, не менее ..... 20 Сопротивление проводника шлейфа, кОм, не более . 10 кпд, %, не менее ....................... 90 Условия эксплуатации: температура окружающей среды, °С .......—25...+45 относительная влажность воздуха при температуре 22 °С, %, не менее ............... 95 атмосферное давление воздуха, мм рт. ст. ..... 100...1000

Рис. 2.16. Принципиальная схема электронного сторожа для садово-огородного участка.  

МАЛОГАБАРИТНОЕ


ОХРАННОЕ УСТРОЙСТВО

С ДИСКРЕТНЫМ УПРАВЛЕНИЕМ

Данное электронное охранное устройство, собранное на ППП и микросхемах, предназначено для установки на входных дверях жилых и производственных помещений и может эксплуатироваться в условиях УХЛ, ХЛ и В. Работает охранное устройство от сети переменного тока напряжением 220 В частотой 50 Гц. При этом электропитание ИМС осуществляется стандартным номинальным напряжением 5 В.

Рассматриваемое охранное устройство может быть использовано также для блокировки открывания обычных врезных и накладных механических замков, устанавливаемых па наружных и внутренних дверях охраняемых объектов бытового и хозяйственною назначения, например на садово-огородных участках. При этом может быть обеспечена дополнительная защита открывания дверей, так как даже при наличии необходимого ключа замок невозможно открыть без знания пятизначного кода. Это достигается незначительной конструктивной доработкой, например врезного механического замка, заключающейся в установке дополнительного стопорного устройства, работающего от маломощного тягового электромагнита или от заменяющего его электромагнитного реле. Эта работа вполне доступна начинающему радиолюбителю в своей лаборатории.

Охранное устройство может быть рекомендовано также для установки на воротах гаражей и складских помещений при эксплуатации в условиях повышенной влажности (до 98%) и при температуре окружающей среды от —35 до 45 °С.

Устройство, принципиальная схема которого изображена на рис. 2.18, характеризуется высокими электрическими параметрами и техническими характеристиками, повышенной надежностью, долговечностью и устойчивостью к внешним механическим нагрузкам, в том числе вибрациям, потребляет малую мощность при работе и имеет сравнительно небольшие размеры. Это обеспечивается достаточно простым схемно-техническим решением и удобным конструктивным исполнением. Технология изготовления устройства определяется возможностями радиолюбителя, оснащением его домашней мастерской.

Комплектующие ЭРИ, входящие в схему охранного устройства, являются неотъемлемой частью системы, в которую дополнительно входят механический замок врезной или накладной конструкции, стопорное устройство защелки, ИМ, который приводится в действие от электромагнита или соленоида.
Как следует из схемы, охранное устройство включает в свой состав входные цепи, конденсаторный фильтр, сетевой понижающий трансформатор питания Т1, выпрямитель, работающий на емкостный фильтр стабилизатор напряжения, кодозадающее устройство с дешифратором, ИМ. Входные цепи обеспечивают подключение охранного устройства к сети переменного тока и защиту его электронной части от проникающих в сеть питания электромагнитных помех. Фильтр собран на двух конденсаторах С1 и С2 со средней точкой, замкнутой на землю. Плавкие предохранители F1 и F2 защищают устройство и его элементы от коротких замыканий и перегрузок, они рассчитаны на максимальный ток срабатывания 2 А. Подключается охранное устройство к питающей сети с помощью стандартного электрического соединителя типа «вилка» X1. После замыкания контактов двухпозиционного переключателя S1 напряжение начинает поступать на первичную обмотку трансформатора и одновременно загорается неоновая индикаторная лампа Н2. Напряжение на исполнительный электромагнит (ЭМ1) не поступает, так как тринистор VS1 находится в закрытом состоянии. В составе БП устройства использован унифицированный сетевой понижающий трансформатор питания Т1 броневой конструкций типа ТПП. При отсутствии покупного трансформатора радиолюбитель сможет изготовить самодельный трансформатор по данным, приведенным в табл. 2.17. Изготавливается трансформатор на броневом магнитопроводе типа Ш, УШ или ШЛ (ШЛМ), активная площадь поперечного сечения стали которого должна быть не менее 6 см2. Броневые трансформаторы характеризуются следующими достоинствами: наличием только одной катушки с обмотками по сравнению со стержневыми трансформаторами, более высоким заполнением окна магнитопровода обмоточным проводом, частичной защитой от механических повреждений катушки с обмотками ярмом магнитопровода. Пластинчатые магнитопроводы типа Ш или УШ собираются из отдельных пластин встык или внахлест. При сборке встык все пластины составляются вместе и располагаются одинаково; в этом случае магнитопровод состоит из двух частей, которые соединяют вместе.


При сборке встык облегчаются сборка и разборка трансформатора. Таблица 2. 17. Моточные данные сетевого понижающего трансформатора питания Т1, примененного в малогабаритном охранном устройстве с дискретным управлением


При сборке внахлест пластины чередуются так, чтобы у соседних пластин разрезы были с разных сторон сердечника. Сборка внахлест уменьшает магнитное сопротивление магнитопровода, но усложняет сборку и разборку трансформатора. Начинающим радиолюбителям рекомендуется изготавливать магнитопровод методом шихтования из пластин электротехнической стали, если нет готового витого ленточного магнитопровода. Самодельный трансформатор содержит три обмотки: одну первичную, рассчитанную на напряжение 220 В переменного тока, и две вторичные обмотки, необходимые для получения заданного уровня выпрямленного напряжения постоянного тока. На вторичных обмотках сетевого трансформатора действует переменное напряжение 4...5 В при холостом ходе. Сетевой трансформатор обеспечивает полную гальваническую развязку вторичных цепей электронной схемы устройства от сети переменного тока и надежную защиту и электробезопасность при наладке и регулировке. Рекомендации по технологическим операциям изготовления трансформатора в домашней мастерской рассмотрены выше, в них особое внимание обращается на сопротивление изоляции. На выводах вторичных обмоток сетевого трансформа тора собран выпрямитель, на выходе которого действуем напряжение постоянного тока 5 В. Выпрямитель работает на емкостный фильтр, выполненный на оксидных конденсаторах. В данном устройстве для преобразования напряжения применена однофазная двухполупериодная мостовая схема, она имеет как положительные, так и отрицательные характеристики, которые ранее отмечались при рассмотрении подобных охранных устройств. Выпрямитель собран на четырех диодах VD1—VD4 малой мощности, средний прямой ток которых не менее 1 А, а импульсное прямое напряжение — не менее 600 В. В качестве выпрямителя может быть применен блок или сборка диодов, выполненных в единой конструкции, например КЦ402А.


Основным преимуществом данного выпрямителя по сравнению с другими схемами является большая частота пульсации, что позволяет уменьшить емкость конденсатора фильтра и габариты сетевого трансформатора. Преимущество мостовой схемы в том, что вторичная обмотка трансформатора питания имеет вдвое меньшее число витков, чем при двухфазной схеме, хотя для двухфазной схемы понадобится только два диода. Однофазный выпрямитель по мостовой схеме из всех вариантов двухполупериодных выпрямителей обладает наилучшими технико-экономическими показателями. Режим работы выпрямителя определяется в основном типом фильтра, включенного на его выходе. Емкостные фильтры применяются в выпрямителях, рассчитанных на малые токи нагрузки. Конденсатор фильтра включается параллельно нагрузке для уменьшения пульсации выпрямленного напряжения. Реакция нагрузки на выпрямитель зависит от емкости конденсатора, сопротивление которого для переменной составляющей много меньше сопротивления нагрузки. Напряжение постоянного тока, сглаженное емкостным фильтром, подается на простейший стабилизатор напряжения, собранный на транзисторе VT1 и стабилитроне VD5. Стабилизатор напряжения автоматически поддерживает постоянство напряжения на нагрузке с заданной точностью. Транзисторный стабилизатор напряжения содержит параметрический стабилизатор, собранный на кремниевом стабилитроне и регулирующий транзистор средней мощности. Применение мощного транзистора позволяет получить гораздо больший выходной ток, чем только от параметрического стабилизатора с таким же стабилитроном. Следует заметить, что примененный стабилизатор напряжения, отличаясь предельной простотой, обладает существенным недостатком: даже при кратковременном коротком замыкании в нагрузке регулирующий транзистор выходит из строя. По этой причине, а также учитывая низкое значение коэффициента стабилизации и относительно большое выходное сопротивление, в схеме можно применить стабилизатор с двумя транзисторами и защитой от перегрузок. Стабилизаторы напряжения постоянного тока с двумя транзисторами различной структуры, приведенные на рис. 2.19, имеют примерно на порядок более высокие значения коэффициента стабилизации и на порядок меньше значения выходного сопротивления, чем стабилизатор, примененный в схеме на рис. 2.16.


И одновременно стабилизаторы, изображенные на рис. 2.17, можно сделать нечувствительными к коротким замыканиям и перегрузкам, добавив диод и резистор, обозначенные на схемах штриховыми линиями. Рекомендованную замену схемы стабилизатора напряжения могут выполнить более опытные радиолюбители. При этом транзистор VT1 можно монтировать на радиаторе охлаждения без изоляционных прокладок, если в стабилизаторе по схеме на рис. 2.19, а, с корпусом устройства соединен положительный полюс стабилизированного напряжения, а в устройстве по схеме на рис. 2.19, б,— отрицательный полюс. Например, использован стабилитрон Д814В (Д810) и применены транзисторы VT1 типа П214, VT2 — МП38А (рис. 2.19, а) или транзисторы VT1 — П702, VT2 — МП40 (рис. 2.19, б); R1 — МЛТ-0,25-560 Ом. В данном устройстве в качестве ИМ может быть использован электромагнит или соленоид, показанный на рис. 2.12. Обмотка содержит 4000 витков провода марки ПЭВ-2 диаметром 0,41 мм. Подвижной сердечник соленоида должен свободно перемещаться в катушке. Кодозадающее устройство с дешифратором включает в свой состав четыре триггера, собранных на элементах микросхемы DA1.1 с выводами 1, 2 и 3; DA1.2 с выводами

Рис. 2.19. Принципиальные схемы стабилизаторов напряжения: а — на транзисторах р-n-р-структуры: б — на транзисторах n-р-n-структуры. 4, 5 и 6; DA2.1 с выводами 1, 2 и 3; DA2.2 с выводами 4, 5 и 6; DA3 с выводами 1, 2 и 3; DA3.2 с выводами 4, 5 и'б; DA4.1 с выводами 1, 2 и 3; DA4.2 с выводами 3, 4 и 5; четыре элемента совпадения, собранные на DA1.4 с выводами 11, 12 и 13; DA2.4 с выводами 11, 12 и 13; DA3.3 с выводами 8, 9 и К); DA4.3 с выводами 8, 9 и 10; дешифратор, который содержит девять переключателей S3—S11; кодозадающий узел, собранный на электрических соединителях Х2—Х27; транзисторный ключ на тринисторе VS1 и транзисторе VT2. Контакты переключателя S2, устанавливаемого на охраняемом объекте в исходном состоянии устройства при закрытой двери, разомкнуты. В этом положении на всех четырех выводах триггеров (вывод 6) действует высокий уровень логической единицы, а на базе транзистора VT2 будет напряжение низкого уровня; транзисторный ключ закрыт, электромагнит и индикаторная лампа H1 находятся в обесточенном состоянии. Для работы охранного устройства применяется пятизначный шифр, который набирается с помощью установления перемычек между контактами соединителей Х2—Х27, но управление осуществляется только тремя кнопками, две из которых нажимают дважды.


Первая цифра кода, например 2, получается при соединении элементов следующей электрической цепи: вывод 1 ИМС DA1, контакт электрического соединителя Х21, перемычка, контакт соединителя Х20, контакт соединителя Х4, перемычка, контакт соединителя Х5, кнопочный переключатель S4. Следует заметить, что кнопочные переключатели S3—S11 устанавливаются на металлической плате, изготовленной из стального листа (полосы) толщиной не менее 4 мм, она закрепляется на входной двери охраняемого объекта. Все выведенные на лицевую панель кнопки обозначаются цифрами кода с 1 до 9. Около переключателя S3 необходимо нанести цифру 1, около S4 — цифру 2, около S5 — цифру 3 и т. д. Данная часть сторожевого устройства образует дешифратор, который имеет постоянное обозначение кнопок. Если потребуется установить первую цифру кода, например 5, то необходимо образовать цепочку: вывод 1 ИМС DA1, X2I, Х20, Х10, X11, S7. Вторая цифра кода устанавливается электрической цепочкой, состоящей из элементов: выводы 9 н 10 ИМС DA1, контакты Х23, Х22, Х2, ХЗ, S3. Эта цепочка определила вторую цифру кода — 1. Третья цифра кода устанавливается набором электрической цепочки, состоящей из элементов: выводы 9 и 10 ИМС DA2, контакты соединителей Х23, Х22, Х16, Х15, кнопочный переключатель S10. Данная электрическая цепь позволяет набирать цифру кода 8. Таким образом, образовав эти электрические цепи, набрано три цифры кода 218, а полный код состоит из пяти цифр. В данном устройстве к этим трем цифрам добавляются еще две цифры, уже участвующие в наборе кода, например 18, и весь код будет 21818. При дешифровании необходимо нажимать последовательно кнопки переключателей S4, S3, S10, S3, S10. Работает охранное устройство следующим образом. После нажатия на первую кнопку, соответствующую первой цифре установленного кода, срабатывает первый триггер, переключаясь из одного крайнего состояния в другое. Напомним, что первый триггер собран на элементах ИМС DA1 (выводы: 1, 2 и 3; 4, 5 и 6). При этом напряжение высокого уровня логической единицы с вывода 3 поступает на вывод 12 элемента совпадения ИМС.


DА1 (выводы 11, 12 и 13). При нажатии на кнопку S3, соответствующую следующей цифре кода, на второй вход этого элемента совпадения (вывод 13) будет подано напряжение высокого уровня логической единицы, а на выходе будет действовать низкий уровень логического нуля (вывод 11). Это состояние будет также на входе второго триггера (DA2 — выводы 1, 2 и 3; 4, 5 и 6), которое приводит к его срабатыванию, и с выхода этого триггера напряжение высокого уровня логической единицы поступает на вход следующего элемента совпадения (вывод 12 ИМС DA2). Если далее нажимать на кнопки и набирать правильный код аналогично сказанному, срабатывают элементы ИМС DA3. Сначала переключается триггер на элементах DA3.1 и DA3.2, затем через элемент совпадения (DA3.1) переключается триггер, собранный на элементах ИМС DA4 (выводы 1, 2 и 3; 4, 5 и б). На этом этапе набора цифр заканчивается первый этап работы дешифратора, который подготавливает устройство к набору пятой цифры кода. Последовательный цикл набора ном.еров кода приводит к переключению всех четырех триггеров на один из входов элемента совпадения ИМС DA4 (вывод 11), на котором начинает действовать высокий уровень логической единицы. Такой же высокий уровень напряжения воздействует и на второй вход этого элемента (вывод 10) через резистор R4. Поэтому при наборе пятой цифры кода 8, когда на третьем входе элемента совпадения ИМС DA4 (вывод 9) также появляется напряжение высокого уровня логической единицы, на выходе этого элемента (вывод 8) будет действовать низкий уровень логического нуля. Этот уровень будет действовать также на входе инвертора, собранного на элементе ИМС DA3 (выводы 11, 12 и 13). Инвертор, как простейшее устройство на микросхеме, преобразует сигнал низкого уровня на входе (выводы 12 и 13 ИМС DA3) в сигнал высокого уровня логической единицы и наоборот. Таким образом, на выводе 8 ИМС DA3 действует напряжение низкого уровня логического нуля. Благодаря инвертору (элемент DA3 с выводами 11, 12, 13) на базу транзистора VT2 приходит уже напряжение высокого уровня логической единицы.


Это состояние приводит к открыванию транзистора VT2 и тринистора VS1. Через обмотку ЭМ1 и индикаторную лампу /// начинает протекать ток. Электромагнит срабатывает и открывает стопор защелки или оттягивает задвижку механического замка. Одновременно загорается лампа накаливания, которая подсвечивает надпись "входите". Теперь рассмотрим вариант с неправильным набором шифра. Если в процессе набора кода нажата кнопка с цифрой, не входящей в него, то вторые входы всех ИМС DA1— DA4 (выводы 5) — входы всех четырех триггеров соединяются с общим проводом и триггеры возвращаются в исходное состояние. После этого код необходимо набирать заново. Триггеры всегда возвращаются в исходное состояние при открывании двери, так как контакты кнопочного переключателя S2 также соединены с общим проводом, который смонтирован с теми же входами триггеров. В схему включена цепочка из резистора R3 и конденсатора С5, которая обеспечивает защиту от ложных срабатываний триггеров и ИМ. При любом появлении напряжения питания на конденсаторе С5 и зарядке его до номинального значения питания все триггеры возвращаются в исходное состояние. При изготовлении охранного устройства, при его сборке, монтаже и регулировке использованы следующие комплектующие ЭРЭ: сетевой понижающий трансформатор питания Т1 броневой конструкции (покупной или самодельный) типа ТПП242-127/220-50; транзисторы VT1 типа КТ807Б, VT2 — МП38А; выпрямительные диоды VD1-VD4 типа Д242Б; стабилитрон VD5 типа КС156А; ИМС DA1 типа К155ЛАЗ, DA2 — К155ЛАЗ, DA3 — К155ЛАЗ, DA4 — К155ЛА4; резисторы R1 типа МЛТ-2-390 кОм, R2 — МЛТ-0,5-270 Ом, R3 — МЛТ-0,25-1 кОм, R4 — МЛТ-0,25-10 кОм, R5 — МЛТ-0,25-1 кОм, R6 — МЛТ-0,25-1 кОм, R7 — МЛТ-0,5-330 Ом; конденсаторы С1 типа МБМ-11-750В-0.05 мкФ, С2 — МБМ-11-750В-0.05 мкФ, СЗ — К50-6-16В-100 мкФ, С4 — К50-6-10В-200 мкФ, С5 — К50-6-6В-10 мкФ, С6 — К50-6-6В-10 мкФ; электрические соединители X1 типа «вилка» с электрическим кабелем в двойной изоляции; Х2—Х27 типа КМЗ-1 приборные; переключатели S1 двухпозиционный типа П2Т-1-1, S2 — самодельной конструкции, S3—S11 типа КМ1-1; плавкие предохранители F1 и F2 типа IIM-1-2 А; индикаторная лампа Н2 типа ТН-03-1;электромагнит ЭМ1 (или соленоид самодельной конструкции); тринистор VS1 типа КУ202Н. Правильно собранное устройство, без ошибок в монтаже и из заведомо исправных комплектующих ЭРЭ, начинает работать сразу же после включения и сеть. При сборке и ремонте охранного устройств могут быть внесены некоторые изменения в схему и заменены комплектующие ЭРЭ.


Например, вместо резисторов МЛТ можно применить резисторы типов ОМЛТ, МТ, ВС, С1-4, С2-8, УДИ, БЛП; вместо конденсаторов К50-6 можно использовать конденсаторы типов К.50-3, К.50-12, К50-16, К50-20; комплект выпрямительных диодов VD1—VD4 типа Д242Б можно заменить диодными сборками типов КЦ402А, КЦ402Е или применить менее мощные выпрямительные диоды. Конструктивно охранное устройство выполняется в виде отдельных сборочных единиц. С учетом органолентических показателей конструируется дешифратор, который укрепляется на входной двери. К этому блоку кроме эстетических предъявляются требования по устойчивости к механическим воздействиям. Дешифратор должен быть прочно укреплен на входной двери, обладать повышенной жесткостью конструкции и противостоять ударным нагрузкам. Блок питания устройства вместе с логическими элементами изготавливается в пластмассовом или металлическом корпусе, размеры которого не превышают 140Х120Х70 мм. Элементы электроники собираются на печатной плате из фольгированного стеклотекстолита. БП устанавливается внутри охраняемого помещения в месте, которое позволяет легко обслуживать это устройство. Основные электрические параметры и технические характеристики малогабаритного охранного устройства с дискретным управлением Номинальное напряжение питающей сети неременного тока, В .................... .220 Номинальная частота питающей сети переменного тока, Гц ....................... .50 Номинальное стабилизированное напряжение электропитания БЭ, В .................. .5 Коэффициент нелинейных искажений напряжения питающей сети переменного тока, %, не более... 12 Пределы изменения напряжения питающей сети переменного тока, В..................... 187... 242 Пределы изменения частоты питающей сети переменного тока, Гц...................... 49... 51 Пределы изменения постоянного напряжения питания БЭ, В ............ ............ .4,97...5,05 Коэффициент стабилизации, не менее .......... .70 Напряжение на выводах обмоток сетевого трансформатора питания Т1, В; под нагрузкой: 11 и 12 ............................ .2,47 13 и 14 .............. ............. .2,46 15 и 16 ............ ............ 5,0 17 и 18 .............. ............ .4,96 19 ч 20 .......................... 1,29 21 и 22 ............................ .1,28 Напряжение питания ИМ переменным током, В ... .220 Максимальная мощность, потребляемая устройством от сети переменного тока, Вт .......... .65 Количество одновременно охраняемых объектов, шт . . 1 Количество цифр в коде, шт ................ .5 Количество разрядов кодовой комбинации ....... .9 Ток, потребляемый устройством в режиме холостого хода, мА, не более .................. .25 Сопротивление изоляции токоведущих частей и элементов устройства относительно металлического корпуса и между собой, МОм, не менее ..... 10 Задержка времени срабатывания устройства при неправильном наборе, мс ................. .0,5 Срок службы, ч, не менее .................. .5000 Вероятность безотказной работы устройства при риске заказчика в=0,9, не менее ............ .0,98 Условия эксплуатации: температура окружающей среды, °С ........ .—25...+45 относительная влажность воздуха при температуре 25 °С, %, не более ............... .9о±3 атмосферное давление воздуха, мм рт.ст. .... .200...900 климатическое исполнение ............... . УХЛ

Рис. 2.18. Принципиальная схема малогабаритного охранного устройства с дискретным управлением.  

ОБЩИЕ СВЕДЕНИЯ


1. ОБЩИЕ СВЕДЕНИЯ

За последние годы создано большое количество разнообразных электронных сторожевых устройств и электротехнических изделий охранной сигнализации, которые находят все большее распространение и применение в быту и на предприятиях. Большинство электронных устройств создают производственные кооперативы, акционерные общества, малые и совместные предприятия. Производства этих предприятий, как правило, оснащаются РЭУ в централизованном порядке. Для охраны квартир, хозяйственных и бытовых построек на приусадебных и садово-огородных участках, а также индивидуальных средств передвижения: легковых автомобилей мотоциклов, каюров, яхт и т. л. могут быть применены устройства, рассматриваемые в настоящей главе.

Эта книга дает возможность познакомиться с различными типами сторожевых устройств с сигнализацией, которые выполнены на современных комплектующих ЭРЭ, ППП и ИМС. Каждая принципиальная электрическая схема в данном справочнике сопровождается пояснениями о примененных в ней ЭРЭ, приводятся сведения о тинах ППП и ИМС, номинальные значения емкостей конденсаторов и сопротивлений резисторов. Некоторые из этих сведений дается и в тексте описаний устройств, и на принципиальных электрических схемах. Элементы подбираются при настройке и регулировке устройств или при их ремонте. Для обеспечения настройки ЭУОС рабочие режимы эксплуатации полупроводниковых изделий указываются или в специальных таблицах, или на принципиальных электрических схемах. Напряжения измеряются приборами с точностью не ниже 1, 5 класса. Некоторые значения напряжений, измеренные но переменному току, приводятся на электрических схемах на входе или на выходе соответствующих цепей и каскадов. Напряжения в контрольных точках, указанные на принципиальных схемах, могут отличаться от измеряемых па ±20%, вследствие большого разброса параметров комплектующих элементов. В справочнике приведены сведения о применяемых в рассматриваемой БРЭА транзисторах, выпускаемых отечественной промышленностью, а также рекомендации об их взаимозаменяемости.
Надо сказать, что наиболее доступными и часто применяемыми транзисторами является биполярные, полевые униполярные транзисторы, п-р-п и р-n-р-структур. Замена транзисторов без ухудшения основных электрических параметров и эксплуатационных характеристик РЭУ позволяет расширить возможности повторения этих изделий в условиях лабораторий радиолюбителей и юных техников. Методы подбора взаимозаменяемых транзисторов основаны на теоретических расчетах схем и достаточно сложны для практического применения в радиолюбительской практике. Существуют методы ориентировочных расчетов и общие правила, которыми следует руководствоваться при замене ППП. При замене транзисторов необходимо учитывать следующие основные параметры: максимально допустимое напряжение перехода коллектор — эмиттер, ток коллектора, рассеиваемую мощность коллектора, статический коэффициент передачи тока. Заменяемый транзистор выбирается из того же ряда, что и заменяющий, и с аналогичными параметрами. В табл. 2. 1 приведены ряды взаимозаменяемых транзисторов, расположенных по группам в порядке возрастания качественных характеристик. Например, транзисторы высокочастотные расположены в порядке возрастания предельной частоты усиления, а низкочастотные — в порядке возрастания минимального значения коэффициента передачи тока. При замене транзисторов средней и большой мощности необходимо соблюдать равенство или близость параметров заменяемого и заменяющего транзисторов. Для маломощных транзисторов существует правило замены германиевых транзисторов на кремниевые соответствующей структуры Таблица 2.1. Рекомендуемая замена транзисторов, применяющихся в сторожевых и сигнальных устройствах


Окончание табл. 2. 1

Основными параметрами выпрямительных диодов являются: предельно допустимый прямой ток, предельно допустимое обратное напряжение, обратный ток и обратное сопротивление. Конкретные значения этих параметров учитываются не только при замене отдельных диодов, но и включенных в выпрямительные устройства источников питания РЭА и РЭУ. Наряду с УОС в быту применяется множество других РЭУ и приборов.


Одновременное использование в быту разнообразной РЭА требует повышенного внимания к обеспечению ее электробезопасности и нормальному функционированию при воздействии непреднамеренных радиопомех. Границы применения, связанные с электробезопасностью, строго определены государственными стандартами и основаны на опыте работы с электроустройствами. Несоблюдение правил техники безопасности и электробезопасности в бытовых условиях при работе ЭУОС может привести к несчастным случаям. Это предупреждение необходимо учитывать особенно тогда, когда используются самодельные РЭУ, хотя известны случаи более высокой электроопасности электрических и радиоэлектронных приборов промышленного изготовления. Важно учитывать климатические условия при эксплуатации РЭА и РЭУ, работающих от сети переменного тока высокого напряжения, и особенно тогда, когда окружающая среда имеет повышенные значения температуры и относительной влажности воздуха. При монтаже, сборке, регулировке, настройке и ремонте ЭУОС необходимо строго соблюдать технику электробезопасности и основные приемы создания и повторения РЭА и РЭУ, рассматриваемых и данной книге. Начинать конструирование бытовых приборов и ycтройств необходимо с низковольтных схем питания, подключаемых к промышленной сети переменного тока напряжением 220 В через понижающий трансформатор питания. Вторичный источник электропитания всегда должен быть низковольтным. Одними из главных функциональных узлов бытовых ЭУОС являются источники вторичного электропитания, которые за последнее время существенно изменились, что определяется непрерывным стремлением разработчиков СИП уменьшить их массу и габариты, повысить кпд за счет применения наиболее рациональных схем и использования высококачественного преобразования энергии переменного тока, экономичных импульсных методов регулирования, комплектующих ЭРЭ, применения ИМС, БИС. Повысились требования к питающим напряжениям промышленной сети. Эта книга не касается теории и расчетов источников вторичного электропитания, она дает готовые схемотехнические решения, проверенные при эксплуатации разнообразной РЭА и РЭУ.


При изложении материала приводятся необходимые для понимания пояснения без строгих доказательств, выводов формул и математических выкладок. В основу всех материалов справочника положены результаты обобщения опыта разработки, изготовления и эксплуатации устройств радиоэлектроники ряда организаций и предприятий. Наиболее часто находят применение автономные источники питания ЭУОС, а также комбинированные источники питания и БП, в которых используют ХИТ и промышленную сеть переменного тока напряжением 127 или 220 В частотой 50 Гц. Сведения об автономных источниках электропитания читатель найдет в специальной технической литературе. Наилучшие результаты дает использование СИП с применением ИМС и ППП широкого употребления, качество которых предварительно проверено и обеспечено наличием ТУ. К СИП и входящим в них комплектующим ЭРИ предъявляются повышенные специальные требования, определяющие заданные значения основных электрических параметров и технических характеристик. Это — высокая надежность, долговечность и стабильность работы, оптимальная точность, высокий кпд, повышенная технологичность изготовления, сравнительно небольшая стоимость, наилучшие массогабаритные характеристики Эксплуатация сторожевых и предупредительных устройств бытового назначения осуществляется в условиях воздействия на них разнообразных внешних факторов: климатических, механических, радиационных, биологических, электромагнитных. Рассматриваемые электронные устройства могут применяться при воздействии повышенной или пониженной температуры окружающей среды, повышенного или пониженного атмосферного давления воздуха, повышенной относительной влажности при повышенной температуре, пыли, инея, росы, повышенной напряженности внешнего электрического или магнитного поля. Поэтому при изготовлении РЭА и РЭУ необходимо учитывать большинство внешних воздействующих факторов, категории размещения этих изделий, климатические зоны страны и высоту над уровнем моря. Ниже (в табл. 2. 2) приводятся конкретные климатические и механические нагрузки, допускаемые при эксплуатации сторожевых и сигнальных устройств, при которых обеспечивается их нормальная и устойчивая работа. Особое внимание необходимо обратить на нормированные параметры ЭМС, которая определяется возможностью одновременно функционировать при воздействии непреднамеренных радиопомех и не создавать недопустимых радиопомех другим устройствам и приборам.


Параметры и требования ЭМС определены государственными стандартами и нормами допускаемых индустриальных помех. Важность учета электромагнитных помех при создании сторожевых и сигнальных устройств определяется также тем, что некоторые новые типы этих изделий срабатывают автоматически на определенных радиочастотах и должны быть заблокированы от самовключения. В зависимости от климатического исполнения сторожевых устройств они могут эксплуатироваться при определенных сочетаниях внешних воздействующих факторов, не превышающих предельных значений. Сочетания относительной влажности и рабочей температуры окружающей среды приведены в табл. 2. 2. Рабочие значения температуры используются как при создании РЭА и РЭУ, так и при их эксплуатации. Таблица 2.2 Сочетания рабочих значений относительной влажности и температуры окружающей среды для различных климатических исполнений РЭУ

Условия эксплуатации электронных сторожевых и сигнальных устройств Температура окружающей среды, °С повышенная 40- 55 пониженная 0 —45 Смена температур (многократное циклическое воздействие) °С —35+ 40 Температура перегрева обмоток сетевых трансформаторов, применяемых в блоках питания РЭУ, °С не более 60 Относительная влажность воздуха при температуре окружающей среды 25 °С табл22 Атмосферное давление воздуха повышенное кПа (кгс/см^2) 29,7 (3) пониженное кПа (мм рт ст ) . 53,3 (400) Вибрационные нагрузки в диапазоне частот 52000 Гц с ускорением g (м/с^2), не более 20 (196) Одиночные удары с ускорением, g (м/с^2), не более 15 (147) Мнокократные удары : с ускорением g (м/с^2) не более 40 (392) количество ударов не менее 1000 длительность ударов мс, не менее 0,5 Линейные нагрузки с ускорением, g(м/с^2) 20(196) Акустические шумы в диапозоне частот 50...10000 Гц с уровнем звукового давления ,дБ не более 120 Помехозащищенность УОС в металлическом корпусе при напряженности внешнего электромагнитного поля ,дБ не менее 120 Иней, роса, пыль, плесневые грибы по НТД и КД Режим работы постоянный

ОХРАННОЕ УСТРОЙСТВО С УНИВЕРСАЛЬНЫМ ВЫХОДОМ


С УНИВЕРСАЛЬНЫМ ВЫХОДОМ

Данное охранное устройство, устанавливаемое на разнообразных объектах бытового и промышленного назначения, отличается от других подобных устройств практически неограниченными возможностями подключения исполнительных электронных и электромеханических устройств и приборов различного принципа действия. К ним в первую очередь относятся устройства звукового оповещения с параллельным включением громкоговорителей мощностью 5 Вт и более, световые или комбинированные звуковые и световые сигнализаторы, тяговые магниты, соленоиды, электротехнические механизмы. Рассматриваемое охранное устройство может выдавать с помощью ИМ сигналы необходимого вида.

Это электронное охранное устройство, целиком выполненное на ППП и ИМС, предназначено для работы в помещениях и закрытых объемах, а также на открытых площадках в условиях УХЛ при жестких воздействиях внешних климатических и механических нагрузок. Устройство устойчиво работает при температуре окружающей среды от —30 до 50 °С, при относительной влажности воздуха до 93% при температуре до 25 °С и пониженном атмосферном давлении до 5 мм рт. ст.

Охранное устройство может устанавливаться в жилых помещениях в городах, поселках, на садово-огородных и приусадебных участках, в офисах, гаражах, складах, хозяйственных постройках, на подвижном транспорте, яхтах, катерах и многой другой личной и частной собственности.

Принципиальная электрическая схема охранного устройства приведена на рис. 2. 9. Устройство изготавливается промышленным способом на государственном предприятии в виде системы предупредительной сигнализации, в комплект поставки которой входят самостоятельные сборочные единицы, узлы и блоки: БП, БЭ, сигнальные цепи и исполнительные устройства. Как видно из схемы, БП в свою очередь состоит из входных цепей, сетевого понижающего трансформатора питания Т1, выпрямительного устройства, собранного по мостовой схеме, емкостного фильтра, СНПТ и защитного устройства.

На входе охранного устройства установлены плавкий предохранитель F1, обеспечивающий защиту входных цепей от перегрузок и коротких замыкании, которые возможны при ошибках в монтаже и из-за неисправности комплектующих ЭРИ и ЭРЭ; индикаторная лампа H1 тлеющего разряда, сигнализирующая о готовности устройства к эксплуатации и о том, что напряжение переменного тока подано на сетевой трансформатор T1; однополюсный переключатель В1 типа «тумблер» для включения питания сети; электрический соединитель X1 типа «вилка» с электрическим кабелем длиной не менее 1, 5 м;

емкостный сетевой фильтр, собранный на конденсаторах С1 и С2, защищающий от помех, которые проникают в сеть питания.

Сетевой понижающий трансформатор питания 77 унифицированной конструкции серии ТН изготавливается на броневом магнитопроводе типа ШЛ, активная площадь поперечного сечения которого должна быть не менее 8 см2.
Трансформатор, примененный в устройстве, включен по схеме, которая указана выше, на напряжение 220 В. При переключении обмоток трансформатора на напряжение 127 В необходимо подать это напряжение на выводы 1 и 3 или 4 и 6. При этом можно соединить выводы первичной обмотки 1 и 4, 3 и 6. Обмотка II с выводами 7 и 8 трансформирует напряжение 5 В переменного тока, обмотка // с выводами 9 и 10 — напряжение 5 В и обмотка // с выводами 9 и 11 — напряжение 6, 3 В. Вместо покупного готового трансформатора питания можно применить трансформатор самодельной конструкции, моточные данные которого приведены в табл. 2. 12. Трансформатор питания в данном устройстве обеспечивает расчетный уровень выходного выпрямленного напряжения, необходимого для питания функциональных узлов, гальваническую развязку выходных вторичных це- Таблица 2.12. Моточные данные сетевого понижающего трансформатора питания T1, примененного в охранном устройстве с универсальным выходом


пей устройства от сети переменного тока и дополнительную электробезопасность при эксплуатации. Сетевой трансформатор T1 входит в состав БП, который конструктивно выполняется в виде самостоятельной сборочной единицы. БП имеет в своем составе выпрямительное устройство, собранное по мостовой схеме на четырех выпрямительных диодах VD1—VD4; емкостный фильтр — на конденсаторах СЗ, С5, С6; СНПТ, собранный на транзисторах VT2—VT4, VT6; ИМ. Встроенный в устройство БП обеспечивает на выходе стабилизированное напряжение 5 В. Особенностью данного БП является то, что унифицированный трансформатор питания Т1 вместе с входными цепями работает в режиме генератора тока и позволяет включить непосредственно после выпрямителя VD1—VD4 стабилитрон VD6, который создает первую ступень стабилизации выходного напряжения. Выпрямительное устройство работает на емкостный фильтр, составленный из трех электролитических конденсаторов СЗ, С5, С6; собрано по однофазной двухполупериодной мостовой схеме, которая характеризуется низким обратным напряжением на комплекте выпрямительных диодов, повышенным падением напряжения, снижающим общий кпд устройства, повышенной частотой пульсации, хорошим использованием габаритной мощности сетевого трансформатора, достаточно высоким уровнем надежности и долговечности эксплуатации, большим расходом полупроводниковых диодов, что повышает стоимость изготовления.


Однотипные выпрямительные диоды нельзя устанавливать на одном радиаторе охлаждения без изоляционных прокладок. Применение одной диодной сборки типа КЦ405 вместо четырех диодов значительно упрощает технологический процесс сборки и монтажа БП. Емкостный фильтр сглаживает пульсации напряжения постоянного тока как на выходе выпрямителя, так и на выходе стабилизатора, с которого снимается 5 В. Выпрямленное напряжение постоянного тока поступает на стабилизатор напряжения, собранный по компенсационной схеме на транзисторах VT2, VT3, VT4, VT6. Управляющим элементом стабилизатора является транзистор VT4, эмиттерный переход которого использован в качестве источника опорного напряжения. РЭ стабилизатора напряжения собран на транзисторах VT2, VT3, VT6. В схеме стабилизатора работает керамический конденсатор С7, который позволяет снизить выходное сопротивление стабилизатора на высоких частотах. По существу рассматриваемый стабилизатор напряжения является второй ступенью стабилизации напряжения 5 В, которое обеспечивает электропитание микросхем. Его точное значение выставляется подбором сопротивления резистора R4, а также подбором параметров транзистора VT4. В электрическую схему БЭ охранного устройства включены три ИМС DA1—DA3, ИМ ИП1 (или сирена), работающий при напряжении 12 В, электромагнитное реле К1, конечные переключатели или герконовые реле (магнитоуправляемые контакты), индикаторные элементы, выходные цепи. В случае применения герконов устройство может обеспечить охрану автомобиля. С помощью геркона осуществляется ввод схемы в рабочее состояние после включения электропитания тумблером В1 и замыкания контактов переключателя S3, который устанавливается на выходной двери охраняемого объекта. Если вместо переключателя S3 используется геркон, то замыкание его контактов производится с помощью магнита. Герконовое реле в этом случае закрепляется на лобовом или боковом стекле автомобиля и включается, если прислонить магнит к стеклу с внешней стороны к тому месту, где укреплен геркон, при этом включается индикаторный светодиод.


После ввода схемы в рабочее состояние при открытой двери охраняемого объекта она работает, подав команду на ИМ (или сирену) через 5...10 с. Эта задержка времени необходима для того, чтобы можно было выйти из помещения или машины и закрыть за собой дверь, а при входе — успеть отключить сигнальное устройство от сети. При установке устройства в автомашине питание его необходимо приспособить от бортовой сети. Каждая из трех ИМС включает в свой состав четыре логических элемента, обозначенных на схеме (рис. 2.9). Из первой ИМС в работе участвуют два элемента — DA1.1 и DA1.2, которые образуют RS-триггер. Логические элементы второй ИМС используются: DA2.1 — в качестве инвертора, DA2.2 — двухходового логического элемента, DA2.3 и DA2.4 — RS-триггера. Логические элементы DA3.1 и DA3.4 образуют один элемент, работающий по схеме И-НЕ, а элементы DA3.2 и DA3.3 являются триггерами. После включения устройства в сеть переменного тока тумблером В1 напряжение питания 5 В после соответствующих преобразований и стабилизации поступает на каскад установки RS-триггеров в положение низкого уровня логического нуля. В первый момент транзистор VT12 открыт, напряжение на его коллекторе близко к напряжению логического нуля, а так как коллектор присоединен к входам всех RS-триггеров, то он устанавливается в нулевое положение. Далее происходит зарядка конденсатора С9 до напряжения стабилизированного значения, напряжение на делителе, составленном из резисторов R22 и R23, будет в конце зарядки равно нулю. Это приводит к закрытию транзистора VT12, на входах триггеров появляется напряжение, соответствующее высокому уровню логической единицы, что обеспечивает устойчивое состояние триггеров. Подготовка устройства к подаче сигналов тревоги исполнительным механизмом завершается при замыкании контактов переключателей S1, S2 и S3. При этом на входе триггеров DA1.1 и DA1.2 установится низкий уровень логического нуля, а на выходе будет действовать сигнал высокого уровня, соответствующий логической единице.


Этот сигнал через резистор R16 подается па базу транзистора VT10. Транзистор открывается, и его коллекторный ток вызывает зажигание светодиода VD9, который является сигналом готовности устройства к работе. Сигнал с выхода 3 элемента DA1.1 поступает на элемент DA2.2, подготавливая его к выдаче сигнала на второй триггер. На входе инвертора DA2.1 устанавливается высокий уровень логической единицы, задаваемый стабилизатором напряжения и снимаемый с коллектора транзистора VT2, а на выходе в это время действует низкий уровень логического нуля. Это положение принципиальной схемы является устойчивым и может продолжаться как угодно долго. В составе БЭ охранного устройства собрано два реле времени, постоянная величина срабатывания которых определяется электрическими цепями, составленными из резисторов и конденсаторов. Первое реле времени выполнено на транзисторах VT9 и VT11 и включает цепь, состоящую из конденсатора С8 и резистора R15. Второе реле времени собрано на транзисторах VT1 и VT5 и также включает в себя электрическую цепь, состоящую из конденсатора С4 и резистора R2. Первое реле на транзисторах VT9 и VT11 срабатывает через 5 с. Этого времени достаточно для отключения сторожевого устройства от сети электропитания, чтобы оно не включило сигнал тревоги. Второе реле может быть отрегулировано на время срабатывания до 30 с, в течение которого работает ИМ. Для того чтобы возвратить охранное устройство и все элементы схемы в исходное состояние, необходимо выключить и снова включить напряжение питания от сети переменного тока переключателем В1. В сторожевом устройстве применены следующие покупные комплектующие ЭРЭ: сетевой понижающий трансформатор питания T1 типа ТН 10-127/220-50 броневой конструкции; ИМС DM типа К1ЛБ553, DA2 — К1ЛБ553, DA3 — К1ЛБ553; транзисторы VT1 типа КП103Е, VT2 — КТ802А, VT3 — МП39, VT4 — МП39, VT5 — КТЗ0ЗБ, VT6 — МП37А, VT7 — КТ312Б, VT8 — КТ312Б, VT9 — КП103Е, VT10 — КТ312Б, VT11 — КТ203Б, VT12 — КТ312Б; выпрямительные диоды VD1—VD4 типа Д237А, VD5 - Д223, VD7 — Д223, VD8-Д223, VD10— Д223, стабилитрон VD6 типа Д809; светодиод VD9 типа АЛ102А; конденсаторы С1 типа К40У-9-630В-0.01 мкФ, С2 К40У-9-630-0,01 мкФ, СЗ — К50-6-10В-200 мкФ, С4 -К50-6-6,3В-200 мкФ, С5 - К50-6-6,ЗВ-200 мкФ, С6 — K50-6-6.3В-200 мкФ, С7 — K10-7В-25В-Н20-0.033 мкФ, С8 — K50-6-6,3В-100 мкФ, С9 — К50-б-б.ЗВ-20 мкФ; резисторы R1 типа МЛТ-2-200 кОм, R2 - MЛT-0,25-240 кОм, R3-МЛТ-0,5-1,8 кОм, R4 — МЛТ-0,25-430 Ом, R5 — МЛТ-0,125-200 Ом, R6 — МЛТ-0,25-300 Ом, R7 - МЛТ-0,125-33 кОм, R8 - МЛТ-0,25-750 Ом, R9 — МЛТ-0,25-4,7 кОм, R10 — МЛТ 0,25-10 кОм, R11 — МЛТ-0,5-5,1 кОм, R12 — МЛТ-0,25-4,7 кОм, R13 — МЛТ-0,25-2,4 кОм, R14 — МЛТ-0,25-10 кОм, R15 — МЛТ-0,125-100 кОм, R16 — МЛТ-0,125-6,8 кОм, R17 — МЛТ-0.25-300 Ом, R18 — МЛТ-0,25-750 Ом, R19 — МЛТ-0,25-33 кОм, R20 — МЛТ-0,25-4,7 кОм, R21 — МЛТ-2-220 Ом, R22 — МЛТ-0,5-82 кОм, R23 — МЛТ-0,25-100 кОм; индикаторная лампа H1 типа ТН-0,2; предохранитель плавкий F1 типа ПМ1-1А; электрические соединители X1 типа «вилка» с электрическим кабелем длиной до 2,3 м, Х2, ХЗ типа ОНЦ-2; переключатели В1 типа «тумблер» ТВ2-1-2, S1, S2 — КП-1, S3 — КП-2; электромагнитное реле К1 типа РЭС-9; магнитоуправляемые контакты типа РЭС-42, РЭС-55. Электронная схема БП собирается на отдельной плате, изготавливаемой из фольгированного одностороннего гетинакса или стеклотекстолита.


Монтаж, регулировка и налаживание БП производятся при отключенной в точках А и Б нагрузке. Выходное стабилизированное напряжение для электропитания ИМС должно быть выставлено до значения 5В. Это достигается подбором сопротивления резистора R4, а также подбором транзистора VT4. Основные электрические параметры и технические характеристики охранного устройства с универсальным выходом Номинальное напряжение питающей сети переменного тока, В ......................... .220 или 127 Номинальная частота питающей сети переменного тока, Гц ............................ .50 Номинальное напряжение автономного источника питания, В .......................... 5 Напряжение на выводах вторичных обмоток сетевого понижающего трансформатора Т1, В: 7 и 8 ............................ .5 9 и 10 ............................ .5 9 и 11............................ .6,3 Номинальное напряжение на выходе выпрямительного устройства в режиме холостого хода, В ... .5,5 Пределы изменения напряжения питающей сети переменного тока, при которых сохраняется устойчивая работа устройства. В ........... .180...240 или 110... 140 Пределы изменения частоты питающей сети переменного тока, Гц ................... .49,5...50,5 Коэффициент нелинейных искажений питающей - сети переменного тока, %, не более ......... .12 Коэффициент стабилизации напряжения постоянного тока на выходе БП, не менее .......... .80 Амплитуда пульсации выпрямленного напряжения, мВ, не более ......................... .20 Мощность, потребляемая устройством во время работы, Вт, не более ................... .80 Ток, потребляемый устройством в сторожевом режиме работы, мА, не более ............... .10 Время задержки срабатывания устройства, с, не более ............................ .6 Время работы устройства в режиме подачи сигнала тревоги, с, не более ................ .40 Количество одновременно охраняемых объектов (количество устанавливаемых конечных выключателей), шт ......................... .1...20 Среднее время наработки на отказ, ч ......... .5000 Вероятность безотказной работы устройства при риске заказчика в=0,92, не менее .......... .0,97 Срок службы устройства, ч, не менее ......... .8000 Помехозащищенность устройства при напряженности внешнего электромагнитного поля, дБ, не менее ............................ .120 кпд, %, не менее ....................... .78

Рис. 2.9. Принципиальная схема охранного устройства с универсальным выходом.

ПРОСТОЕ ЭЛЕКТРОННО-РЕЛЕЙНОЕ ОХРАННОЕ УСТРОЙСТВО


5. ПРОСТОЕ ЭЛЕКТРОННО-РЕЛЕЙНОЕ ОХРАННОЕ УСТРОЙСТВО

Рассматриваемое охранное устройство в комплекте, состоящем из БЭ, исполнительного устройства, датчиков и громкоговорящей установки, представляет собой но существу систему предупредительной сигнализации.

Электронно-релейное сторожевое устройство, включающее в свой состав два электромагнитных реле и современные ППП, предназначено для охраны различных объектов и в первую очередь жилых помещений от проникновения посторонних лиц. По договоренности с жильцами соседних квартир сигнальные элементы схемы могут быть установлены у них, чем достигается дополнительная охрана. Настоящее устройство может быть использовано для охраны хозяйственных построек на садово-огородных участках, гаражей, производственных помещений и автомобилей. Электропитание охранного устройства осуществляется от сети переменного тока напряжением 220 или 127 В частотой 50 Гц, а также от автономного источника питания напряжением 12 В. От аккумуляторной батареи устройство начинает работать сразу же после отключения от сети переменного тока. Устройство сохраняет работоспособность при напряжении электропитания от автономного источника от 9 до 15 В постоянного тока.

Принципиальная электрическая схема охранного устройства приведена на рис. 2. 4. Устройство включает в свой состав входные цепи, устройство подключения к источникам питания, сетевой понижающий трансформатор питания T1, полупроводниковый выпрямитель c емкостным фильтром, ПСН, электронное реле времени, сигнальный узел с исполнительным устройством и сигнальные цепи.

Конструкция охранного устройства должна предусматривать в своем составе не только отсек для установки внутреннего автономного источника питания, но и возможность подключения к выходным зажимным клеммам Х2 и ХЗ дополнительного источника питания постоянного тока. Допускается использовать в качестве встроенною источника электропитания аккумуляторы типа НКГЦ 35-1 или 10НКГ-10Д. Но предпочтительнее использовать, первый тип аккумулятора, так как он по своим габаритным размерам аналогичен элементам ХИТ типа 373.

В качестве дополнительного внешнего источника напряжением от 9 до 15 В постоянного тока может быть использован покупной БП с током нагрузки не менее 0,6 А и амплитудой пульсации выпрямленного напряжения не более 0,5 В, а также автомобильный аккумулятор с аналогичными параметрами.
При этом в случае преднамеренного обесточения (отключения) внешнего электропитания устройство охраны автоматически переходит на автономное питание от встроенных батареи. При подключении внешнего источника необходимо соблюдать полярность. К контактному зажиму Х2 всегда подключается «плюс», а к зажиму Х.3 — «минус». Входное устройство обеспечивает подключение системы к сети переменного тока напряжением 220 или 127 В частотой 50 Гц с помощью электрического соединителя X1 типа «вилка», который смонтирован с электрическим кабелем длиной от 1,5 до 2,3 м. Сетевые плавкие предохранители F1 и F2 защищают входные цени от коротких замыканий и перегрузок, которые могут возникнуть из-за неправильного монтажа или неисправности комплектующих ЭРЭ. Включение и выключение электропитания осуществляется двухполюсным переключателем S1. Параллельно первичной обмотке сетевого трансформатора включен конденсатор С1 в качестве помехоподавляющего фильтра. Сетевой понижающий трансформатор питания Т1 изготавливается на магнитопроводе типа Ш бро- Таблица 2.7. Моточные данные сетевого понижающего трансформатора питания Т1, примененного в простом электронно-релейном охранном устройстве

  невой конструкции. Трансформатор имеет одну катушку с тремя обмотками. Катушка устанавливается на центральном стержне магнитопровода, активная площадь поперечного сечения стали которого должна быть не менее 5 см2. Напряжение питания 220 В подается на выводы 1 и 3, напряжение 127 В — на выводы 1 и 2. На вторичной обмотке трансформатора в режиме холостого хода действует напряжение 13,3 В переменного тока. Моточные данные сетевого понижающего трансформатора питания Т1 приведены в табл. 2.7. Сетевой трансформатор кроме основной функции — трансформации напряжения до значения необходимого для работы охранного устройства — обеспечивает гальваническую развязку вторичных электронных цепей от сети переменного тока высокого напряжения и дополнительную электробезопасность при работе с низким вторичным напряжением. Переменное напряжение со вторичной обмотки трансформатора поступает на полупроводниковый выпрямитель неуправляемого типа, собранный на четырех выпрямительных диодах VD1—VD4 по однофазной двухполупериодной мостовой схеме, которая имеет ряд преимуществ по сравнению с другими выпрямительными схемами.


Выпрямитель дает на выходе повышенную частоту пульсации выпрямленного напряжения постоянного тока, пониженное обратное напряжение на комплекте выпрямительных диодов, обеспечивает полное использование габаритной мощности сетевого трансформатора. Одновременно выпрямители данного типа обладают и некоторыми недостатками: повышенными потерями, которые снижают общий кпд охранного устройства, повышенным расходом выпрямительных диодов — четыре вместо двух или одного, невозможностью установки диодов одинаковых типов на металлическом радиаторе без изоляционных прокладок, более высокой стоимостью изготовления и повышенной технологической сложностью. На выходе выпрямителя собран емкостный фильтр, сглаживающий пульсации выпрямленного напряжения постоянного тока. Выпрямитель работает на емкостную нагрузку, выполненную на оксидных электролитических конденсаторах С2 и СЗ. Выпрямленное напряжение со сглаживающего фильтра подается на стабилизатор напряжения нерегулируемого параметрического типа, который собран па стабилитроне VD5 и транзисторе VT2. Резистор R6, включенный между эмиттером транзистора VT3 и базой транзистора VT2, поддерживает нормальный режим работы регулирующего транзистора при отключенных устройствах сигнализации и электронного реле времени. Транзистор VT2 работает в режиме эмиттерного повторителя. Выходное стабилизированное напряжение равно 12 В. Напряжение пульсации на выходе стабилизатора при токе нагрузки 100 мА не превышает 5 мВ. В схеме БЭ охранного устройства собрана система защиты от перегрузок и коротких замыканий в цепях сигнализации и на выходе устройства в нагрузке. Система защиты включает в свой состав резисторы R1, R2, R3, транзистор VT1 и два электромагнитных реле K1 и К.2. Система защиты от коротких замыканий работает следующим образом. При перегрузке как только ток, протекающий через резистор R1, превысит установленное значение (от 100 мА и выше), открывается транзистор VT1 и напряжение поступает на электромагнитное реле К2. После срабатывания реле замыкаются его контакты К2.1, через которые напряжение питания подается на обмотку реле K7, это реле также срабатывает, его контакты K1.1 размыкаются и отключают нагрузку и электронную схему сигнализации от электропитания.


В устройстве защиты предусмотрена сигнальная лампа Н2, которая обеспечивает более четкое срабатывание системы защиты и сигнализирует о перегрузке. Суммарный ток, протекающий через лампу Н2 и далее через стабилизатор напряжения и балластный резистор R3, при отсутствии нагрузки должен несколько превышать ток срабатывания защиты, в противном случае при коротком замыкании в нагрузке контакты электромагнитного реле K1 будут периодически замыкаться и размыкаться. Для устранения этого явления необходимо провести регулировку подбором сопротивлений резисторов, входящих в указанную цепочку. Реле времени охранного устройства собрано на транзисторах VT3, VT4, электромагнитном реле КЗ и стабилитронах VD6 и VD9. Сигнальное устройство выполнено на транзисторах VT5—VT8 и выпрямительных диодах VD7, VD8 и VD10. На дверях и окнах устанавливаются переключатели S3, S4, контакты которых замыкаются при их открывании, что приводит к запуску реле времени. При выбранных номиналах комплектующих изделий и ЭРЭ, указанных на схеме, реле времени работает 20 мин. Одновременно с началом работы реле времени срабатывает устройство запуска электрического звонка и сигнального устройства. Тактовый генератор и генератор звуковой частоты обеспечивают генерирование периодически прерывающегося сигнала тревоги, подаваемого через громкоговорители, которые устанавливаются в различных точках охраняемых помещений и, как ранее указывалось, у соседей по этажу. Проводку и монтаж всей охранной системы необходимо выполнять проводниками в прочной изоляции, в том числе от датчиков к БЭ и до сирены, выходная мощность которой достигает 5 Вт. Отключение сигнального устройства осуществляется специальной кнопкой, расположение которой в помещении должно быть известно только его хозяевам. Общее отключение охранного устройства от источников питания обеспечивается переключателями S1 и S2. При этом переключатель S2 позволяет работать охранному устройству в дежурном режиме. Аккумуляторная батарея вступает в работу только в том случае, когда напряжение на ней больше напряжения, вырабатываемого стабилизатором напряжения.


Включением контактов переключателей S2 и S8 аккумуляторная батарея может быть поставлена на подзарядку. Относительно простое схемно-техническое решение и доступность приобретения примененных в охранном устройстве комплектующих изделий и ЭРЭ позволяют почти без трудностей повторить его даже начинающим радиолюбителям. Конструкция устройства должна быть выполнена по блочно-модульному типу с применением печатного и навесного монтажа. При изготовлении охранного устройства использованы следующие комплектующие ЭРИ и ЭРЭ: сетевой понижающий трансформатор питания Т1 броневой конструкции типа Ш; транзисторы VTI типа КТ342А, VТ2 — П1214В, VT3 — КТ201В, VT4 — П214Б, VT5 — П307А, VТ6 — КТ201Г, VT7 — КТ312Б, VT8 КТ201Г; выпрямительные диоды VD1—VD4 типа Д223А, VD7 - КД105Б, VD8 - КД105Б, VD10 — КД105Б, VD11-КД105Б, VD12 — Д237А; стабилитроны VD5 типа Д815Е, VD6 - Д814Д, VD9-Д814В; конденсаторы С1 типа МБМ-11-630В-0,1 мкФ, С2 — К50-6-25В-500 мкФ, СЗ -- К50-6-25В-500 мкФ, С4 — К10-7В-25В-0,0047 мкФ, С5 — К10-50-25В-1,5 мкФ, С6 — К50-6-16В-2200 мкФ, С7 — К50-6-16В-20 мкФ; резисторы R1 типа МЛТ-0,25-6,8 Ом, R2 — МЛТ-0,25-3,9 кОм, R3 — МЛТ-0,25-100 Ом, R4 — МЛТ-2-560 Ом, R5 — МЛТ-0,25-220 Ом, R6 — МЛТ-2-2,2 кОм, R7 — МЛТ-0,25-1,2 кОм, R8 — МЛТ-0,5-150 Ом, R9 — МЛТ-0,25-560 кОм, R10-МЛТ-0,25-240 кОм, R11 — МЛТ-0,25-560 Ом, R12 — МЛТ-0,25-6,8 кОм, R13 — МЛТ-0,5-150 кОм, R14 — МЛТ-0,5-12 кОм, R15 — МЛТ-0,5-47 кОм, R16 — МЛТ-2-47 кОм, R17 — СП4-1а-0,5Вт-2,0 МОм, R18 — СП4-1а-47 кОм; индикаторная лампа H1 типа МН-6,3-0,22А, Н2 — К6-60; переключатели S1 типа П2Т-1-1, S2 — П1Т-1-1, S3 — КМ1-1, S4 — КМ1-1, S5 — КМ1-1, S6 — П1Т-1-1, S7 — П1Т-1-1, S8 — ТВ2-1-2; предохранители F1 типа ПМ1-0.5A, F2 — ПМ1-0,5 А; аккумуляторная батарея GB1 типа 12ЦНК-0.85 (или рекомендованные выше); электромагнитные реле К1 типа РЭС-10 (паспорт РС4.524.303), К2 — РЭС-15 (паспорт РС4.591.003), КЗ — РЭС-9; электрические соединители X1 типа «вилка» с электрическим кабелем с двойной изоляцией длиной не менее 1,5 м, Х2, ХЗ типа КМЗ-1; громкоговорители ВА1, ВА2, мотоциклетная сирена ВАЗ; исполнительный механизм ИМ1 (на схеме не показан) включается в работу контактами электромагнитного реле КЗ.2. При регулировке и ремонте охранного устройства могут быть применены другие аналогичные комплектующие ЭРЭ, не ухудшающие его основные электрические параметры и эксплуатационные характеристики.


Транзисторы типа КТ342А можно заменить на транзисторы типов КТ342Б, КТ342Г, КТ301В, КТ312Б, КТ315В, КТ315Г, транзистор типа П214В — на П214А, П214Б, П214Г, П215, транзистор типа КТ201Г — на КТ312Б; выпрямительные диоды типа Д223 — на Д226А, КД105 с любым буквенным индексом, диоды типа КД105Б — на Д220А; резисторы типа МЛТ — на ВС, ВСа, ОМЛТ, УЛИ, МТ, С1-4; конденсаторы типа К50-6 — на К50-3, К50-12, К50-16, К50-20. Регулировка охранного устройства .заключается в установке постоянного тока, протекающего через стабилитрон VD5, и тока срабатывания системы защиты подбором сопротивления резистора R1. Правильно собранное устройство работает сразу же после монтажа, обеспечивая все основные электрические характеристики. В практической деятельности мастерам-радиолюбителям часто приходится выбирать и применять различные ИМ и устройства, электропитание которых может осуществляться или от сети переменного тока, или от вторичных автономных источников питания. В качестве ИМ в СОС используются осветительные и сигнальные лампы, акустические преобразователи и механические или электромеханические устройства автоматического действия. При этом количество таких устройств в одной СОС может колебаться от одного до нескольких десятков. В последнее время все чаще начинают применяться радиотехнические и радиоэлектронные излучатели и оповещатели, которые устанавливаются на охраняемых объектах и ЦПУ и работают в строго установленном диапазоне частот. Для начинающих радиолюбителей достаточно сложной является задача правильного включения и срабатывания сторожевого устройства, надежная, устойчивая и долговечная работа исполнительных механизмов. Принципиально включение исполнительных механизмов в работу можно свести к нескольким простым схемам, которые рассматриваются ниже и могут быть использованы радиолюбителями. Исполнительные механизмы работают в выходных цепях охранных устройств и должны выдавать информацию и обеспечивать надлежащую охрану объектов при условии, когда конкретные охраняемые помещения позволяют без каких-либо изменений использовать рассматриваемые в справочнике сторожевые устройства.


Подача звуковых или мигающих оптических сигналов в большинстве случаев может быть осуществлена с помощью простых устройств, в которых формируются сигналы, показывающие состояние контролируемых помещений и объектов. На рис. 2.5 даны принципиальные схемы возможных вариантов включения исполнительных устройств, которые могут быть применены в схемах охранной сигнализации. Включение ИМ в работу не зависит от примененного источника электропитания: сети переменного тока или ХИТ.
Рис. 2. 5. Принципиальные схемы включения исполнительных звуковых и световых
устройств.
На рис. 2. 4 исполнительное устройство ВАЗ показано в условном варианте включения, которое зависит от его электропитания переменным или постоянным током, от фактического значения напряжения питающей сети, а также от конструкции выбранного ИМ. Применив в качестве сторожевого сигнализатора динамическую головку ВА1, можно воспользоваться схемой, приведенной на рис. 2. 5, а. Работает исполнительное устройство в автономном режиме питания от ХИТ напряжением 4, 5 В при замыкании контактов реле К1.1 и одновременном размыкании контактов К1.2. Сам сигнализатор собран, на четырех транзисторах VT1-VT4, которые образуют два мультивибратора. Первый мультивибратор собран на транзисторах VT3—VT4, второй — на VТ1—VT2. Для изготовления сторожевого сигнализатора (рис. 2.5, а) использованы следующие комплектующие ЭРЭ: транзисторы VTI типа КТ316А, VT2 — ГТ402А, VT3 — КТ316А, VT4 — ГТ402А; резисторы R1 типа МЛТ-0,25-75 кОм, R2 — МЛТ-0,25-5,6 кОм, R3 — МЛТ-0,25-300 Ом, R4 — МЛТ-0,25-1 кОм, R5 — МЛТ-0,25-75 кОм, R6 — МЛТ-0,25-5,6 кОм, R7 — МЛТ-0,25-300 Ом, R8 — МЛТ-0,25-1 кОм; конденсаторы С1 типа К50-3-6В-10 мкФ, С2 — К50-3-6В-10 мкф, СЗ — К50-3-6В-50 мкФ, С4 — К10-7В-25В-0,068 мкФ. В качестве звукоизлучателя можно применить громкоговоритель с сопротивлением звуковой катушки до 10 Ом. Если в качестве ИМ будет принят данный сигнализатор, то необходимо учитывать, что его работа осуществляется только после срабатывания реле КЗ электронно-релейного охранного устройства (рис. 2.4). Па рис. 2.5, б рассматривается схема исполнительного устройства с промежуточным управлением включения индикаторной лампы и акустического излучателя звуковой частоты.


Как видно из схемы, это устройство содержит понижающий трансформатор Т1, на вторичной обмотке которого должно действовать переменное напряжение в пределах 8...12 В; однофазный двухполупериодный мостовой выпрямитель, собранный на четырех диодах VD1, VD2, VD4, VD5 с емкостным фильтром, который выполнен на оксидном конденсаторе С2; электронное реле выдержки времени, собранное на двух транзисторах VT1 и VT2 и электромагнитном реле К1. Времязадающая цепочка R1, C1 и R2 определяет длительность горения индикаторной лампы H1. Работает данное устройство следующим образом. После срабатывания электромагнитного реле КЗ (рис. 2. 4) его контакты К3.1 смыкаются и подают напряжение питания на сетевой трансформатор Т1.В это время подаемся акустический сигнал от сирены ВА1, начинает работать выпрямитель, постоянное напряжение которого заряжает конденсатор С2. Почти одновременно начинает заряжаться конденсатор C1 и после этого открывается составной транзистор и электромагнитное реле К1 срабатывает. Его контакты К.1.1 замыкаются и включают индикаторную лампу H1, контакты К1.2 подключают первичную обмотку понижающего трансформатора к сети питания. После того как основная схема (рис. 2.4) будет отключена и реле КЗ вновь разомкнет свои контакты КЗ.1, данное устройство будет продолжать работать. Для отключения устройства необходимо разомкнуть контакты переключателя S1, который устанавливается скрытно. При изготовлении исполнительного устройства использованы следующие комплектующие ЭРЭ: транзисторы VT1 типа КТ315Б, VT2 — КТ315Б; резисторы R1 типа МЛТ-0,25-510 кОм, R2 — МЛТ-0,25-1 МОм; выпрямительные диоды VD1—VD5 типа КД105Б; конденсаторы С1 типа К50-6-20В-500 мкФ, С2 — К50-6-20В-1000 мкФ; электромагнитное реле К1 типа РЭС32; сирена ВА1 с напряжением электропитания переменным током 220 В; лампа накаливания H1. На рис. 2.5, в показана схема включения исполнительного устройства, представляющего собой генератор акустических сигналов. Так же как и в ранее рассмотренных схемах, подключается данное устройство к источнику электропитания после срабатывания реле КЗ по схеме, приведенной на рис. 2.4. При изготовлении данного устройства использованы следующие ЭРЭ: транзисторы VT1 типа МП20Б, VT2 — ГТ322Б, VT3 — ГТ322Б; резисторы R1 типа МЛТ-0,25-100 Ом, R2 — МЛТ-0,25-2,7 кОм, R3 — МЛТ-0,25-1,5 кОм, R4 — МЛТ-0,25-150 Ом, R5, R6 — МЛТ-0,5-10 кОм, R7 — МЛТ-0,25-1,5 кОм; конденсаторы С1, С2 типа К10-17-25В-0,47 мкФ; лампа накаливания Н1 с номинальным напряжением питания 220 В; электрические соединители X1—Х4 типа КМЗ-1 приборные; громкоговоритель с сопротивлением звуковой катушки 15 Ом. После срабатывания электромагнитного реле КЗ (рис. 2.4) его контакты КЗ.1 и КЗ.2 замыкаются, подавая напряжение питания на сигнальное устройство.


Источником питания может служить аккумуляторная батарея или другой ХИТ, который подключается в точках А и Б с соблюдением указанной на схеме полярности. Схема представляет собой мультивибратор, собранный на транзисторах VT2, VT3, с оконечным каскадом для получения акустического сигнала на транзисторе VT1. В мультивибраторе можно использовать практически любые германиевые транзисторы низкой и высокой частоты и коэффициентом передачи тока не менее 40...50, например ГТ322Б, МП21Д, ГТ109Г, ГТ308Б, ГТ309Г, ГТ309Е (VT2, VT3), а также МП21Д, МП25Б, МП26Б, МП41, МП42Б (VTI). Ток на оконечный каскад подается только на время генерирования сигнала. Для запуска генератора контакты ХЗ и Х4 замыкаются одновременно с замыканием контактов переключателя S1, который устанавливается на входной двери. Основные электрические параметры и технические характеристики простого электронно-релейного сторожевого устройства Номинальное напряжение питающей сети переменного тока, В ....................... .220 или 127 Номинальная частота питающей сети переменного тока, Гц ........................ .50 Номинальное напряжение встроенного автономного источника питания, В ............... .12 Пределы изменения напряжения питающей сети переменного тока, В .................... .187...242 или ................................... .110...140 Пределы изменения частоты питающей сети переменного тока, Гц ..................... .49,5...50,5 Пределы изменения напряжения автономного источника питания постоянного тока, В ....... .9...15 Напряжение переменного тока на вторичных обмотках сетевого трансформатора. В: на выводах 5 и б ................... 6 на выводах 7 и 8 ................... 13,3 Выходное стабилизированное напряжение, В ..... .12 Коэффициент нелинейных искажений питающей сети переменного тока, %, не более ......... .10 Коэффициент стабилизации напряжения постоянного тока, не менее .................... .150 Амплитуда пульсации выпрямленного напряжения после стабилизации, мВ, не более .......... .6 Ток, потребляемый устройством в дежурном режиме работы, мА, не более ............... .4 Время срабатывания устройства, мс, не более.... 30 Мощность, потребляемая устройством при полной нагрузке, Вт, не более.................. 60 Время непрерывной работы тревожного сигнала после срабатывания, мин, не менее.......... 15 Количество одновременно охраняемых объектов, шт, в пределах....................... 1... 10 Номинальная выходная мощность на громкоговорителях, Вт....................... 15 Сопротивление изоляции токоведущих частей устройства между собой и металлическим корпусом устройства, МОм, не менее........ 10 Помехозащищенность устройства в металлическом корпусе при воздействии внешнего электромагнитного поля, дБ, не менее............... 120 Срок службы устройства, ч, не менее.......... 5000 Вероятность безотказной работы устройства при риске заказчика в=0, 9, не менее ....... 0,97 кпд, %, не менее ....................... 75

Рис. 2. 4. Принципиальная схема простого электронно-релейного охранного устройства.

ПРОСТОЙ РЕЛЕЙНЫЙ ОХРАННЫЙ АВТОМАТ


Релейный автомат предназначен для установки на входных дверях жилых домов, помещении, внутренних дверях производственных объектов и т. д.

В устройстве применены покупные комплектующие ЭРИ и ЭРЭ, которые рассчитаны на эксплуатацию в условиях климатических и механических нагрузок. Это устройство, конструктивно изготовленное достаточно герметично, может работать при температуре окружающего воздуха от —30 до 45 °С, при относительной влажности окружающей среды до 90% при температуре 25 °С и при пониженном атмосферном давлении до 5 мм рт. ст.

Работает релейный автомат от сети переменного тока напряжением 220 или 127 В частотой 50 Гц. Источник электропитания может быть выполнен в двух вариантах:

в виде встроенного узла, составляющего единое целое с релейным автоматом, и в виде автономного источника постоянного тока напряжением 24 В.

Принципиальная электрическая схема простого релейного охранного автомата приведена на рис. 2. 11. Рассматриваемый релейный автомат включает при правильном наборе шифра электромагнит открывания дверей. Шифр автомата устанавливается включением перемычек, три из которых являются рабочими, а остальные фальшивыми. Таким образом, расшифровка заключается в правильном наборе трех цифр шифра на специальном щитке с кнопками. Следует заметить, что каждой цифре кода соответствует своя кнопка, которую необходимо нажать при наборе. Порядок соединения контактов переключателей должен быть строго определенным.

Как следует из электрической схемы, релейный автомат включает в свой состав входные цепи, сетевой понижающий трансформатор питания Т1, выпрямительное устройство для электропитания обмоток реле, схему релейного автомата, выходные цепи и ИМ со звуковой или световой сигнализацией.

Подключение релейного автомата к сети переменного тока обеспечивается электрическим переключателем X1 типа «вилка» и штепсельной розеткой. Малогабаритный двухполюсный переключатель S1 служит для подачи электропитания на ИМ, электрический звонок и релейный автомат. На входе устройства собран емкостный фильтр на конденсаторах С1 и С2, защищающий его от ложных срабатываний и электромагнитных помех, которые проникают в сеть питания.
Два плавких предохранителя F1 и F2 защищают входные цепи и элементы схемы от перегрузок и коротких замыканий, которые могут возникнуть по различным причинам: из-за неисправности ЭРЭ, неправильного монтажа элементов, неправильного включения трансформатора и др. Сетевой понижающий трансформатор питания Т1, примененный в охранном устройстве, относится к числу унифицированных трансформаторов типа ТПП. Он рассчитан на подключение к сети переменного тока напряжением 110, 127, 220 и 237 В. На выводах вторичных обмоток трансформатора действует переменное напряжение от 2, 5 до 10 В. Изготавливается трансформатор на витом ленточном магнитопроводе типа ШЛ или ШЛМ с уменьшенным расходом меди. Наматывается одна катушка, которая устанавливается на центральный стержень с активной площадью поперечного сечения стали не менее 6,5 см2. Вместо унифицированного покупного трансформатора питания можно применить самодельный, изготовленный в соответствии с техническими характеристиками, изложенными в табл. 2.15. Сетевой трансформатор можно изготовить на магнитопроводе, шихтованном из пластин электротехнической стали типа Ш20х30 с двумя или тремя обмотками. Сетевой трансформатор Т1 выполняет функцию трансформации высокого напряжения переменного тока 220 В в низкое напряжение, не превышающее 24В; обеспечивает гальваническую развязку первичных и вторичных цепей релейного автомата, относительную электрическую безопасность при работе с низковольтным напряжением, электропитание маломощного паяльника, расчетное значение выпрямленного напряжения постоянного тока, необходимого для электропитания электромагнитных реле К.1—К.4. Если у радиолюбителя есть трансформатор, но неизвестны его тип и электрические параметры, то необходимо, пользуясь простым омметром, определить расположение выводов всех обмоток трансформатора. Как правило, вторичная отмотка трансформатора имеет сравнительно небольшое число витков достаточно толстого Таблица 2.15.Моточные данные сетевого понижающего трансформатора питания Т1, примененного в простом релейном охранном автомате




провода, значит, по этому признаку можно предварительно определить выходные обмотки. Но иногда это сделать невозможно, если таких обмоток много и они предназначены для выполнения различных функций (накальные, анодные, для питания ППП и др.). При наличии зазора между катушкой и магнитопроводом на катушку поверх обмоток наматывают одну дополнительную обмотку с максимально возможным количеством витков. На одну из вторичных обмоток этого трансформатора подают напряжение переменного тока 5 В. Измерив напряжение на каждой обмотке трансформатора, в том числе и на дополнительной, определяют число витков любой обмотки по известным формулам, пользуясь исходными данными. На выходе сетевого трансформатора собран полупроводниковый выпрямитель на четырех диодах по однофазной двухполупериодной мостовой схеме. Так как на выходе вторичных обмоток трансформатора действуют напряжения переменного тока меньше расчетного значения, необходимо включить вторичные обмотки последовательно, как показано на схеме. Выпрямитель, собранный по мостовой схеме, имеет ряд положительных и отрицательных параметров и характеристик. К положительным относятся: повышенная частота пульсации выпрямленного напряжения постоянного тока на выходе выпрямителя; уменьшенная величина обратного напряжения, действующего на комплекте выпрямительных диодов; более полное использование габаритной мощности сетевого трансформатора Т1. К отрицательным — несколько увеличенные потери мощности, более низкий кпд, невозможность установки выпрямительных диодов на одном металлическом радиаторе без промежуточных изоляционных прокладок, повышенный расход полупроводниковых диодов и более высокая стоимость изготовления этого выпрямителя. Выпрямитель работает на емкостный фильтр, собранный па электролитическом конденсаторе СЗ, который служит для дополнительного сглаживания пульсации постоянного тока. На выходе вторичных обмоток сетевого трансформатора в режиме номинальной нагрузки действует переменное напряжение: на выводах 11 и 12 действует напряжение 10 В, если на первичную обмотку подано напряжение 220 В (выводы 2 и 9); на выводах 13 н 14 — 10 В; на выводах 15 и 16 — К) В; на выводах 17 н 18 — 10 В; на выводах 19 н 20 — 5В и на выводах 21 и 22 — 5 В. В данном автомате применен трехзначный шифр, который набирается установлением перемычек между соединителями Х2 Х15. Как видно из схемы, перемычки между контактами Х2 н ХЗ, Х8 и Х9, X11 и Х15 соединены между собой и подключены к обмотке реле К4. Перемычки между Х4 и Х5 соединяются с обмоткой реле К1, перемычка между X6 и Х7 соединяется с обмоткой реле К2 и перемычка между контактами Х10 и X11 — с обмоткой реле КЗ. Таким образом, рабочими перемычками в данном наборе являются перемычки между контактами Х4 и Х5, Х6 и Х7, X10 и X11. Остальные перемычки - дежурные.


Следует заметить, что в данном случае зашифровано число 235, но если переставить эти перемычки, то можно установить практически любое число, составленное из цифр от 1 до 7. Для того чтобы войти в помещение, необходимо последовательно, в установленном порядке нажать кнопки переключателей S4, S5 и S7. Каждой цифре соответствует своя кнопка, которая нажимается при наборе номера. При этом первая цифра шифра всегда является вилкой, подключаемой к контакту Х5, вторая цифра соответствует вилке, подключаемой к контакту Х7, и третья цифра кода соответствует вилке, подключаемой к контакту X11. Теперь, если надо зашифровать номер, например 751, то необходимо вилку с контакта Х5 переключить на контакт Х15, вилку с контакта Х7 — на контакт X11, а вилку с X11 — на контакт ХЗ. Остальные вилки, соединенные с обмоткой реле К4, подсоединить к оставшимся свободными контактам. Релейный автомат работает следующим образом. Зная установленный шифр — 235, сначала нажимается кнопка переключателя S4, соответствующая цифре 2, тем самым подается постоянное напряжение на обмотку реле К1, которое срабатывает, переключая свои контакты. Замкнутые контакты реле К1.1 блокируют нажатую кнопку S4, и ее можно отпустить — реле К1 останется под напряжением; затем нажимается кнопка S5, контакты которой замыкают цепь питания реле К2, оно срабатывает, замыкая свои контакты К2.1 и К2.2. Контакты К2.1 самоблокируют питание реле К2, а контакты К2.2 подготавливают реле КЗ к срабатыванию, если следующая цифра также будет набрана правильно. И теперь, нажав на кнопку S8, соответствующую цифре 5, напряжение будет подано на реле К3. Контакты сработавшего реле КЗ (КЗ.1) заблокируют питание этого реле, а контакты КЗ.2 при замыкании подадут питание на электромагнит, установленный на двери. Сердечник ЭМ1 втягивается внутрь обмотки и открывает механический замок. Электромагнитные реле К1-КЗ остаются включенными в течение всего времени набора шифра и до тех пор, пока дверь не будет oткрыта, то есть будут разомкнуты контакты конечного выключателя S2, установленного скрытно на дверях.


Эти контакты включены последовательно с обмотками электромагнитных реле. При размыкании контактов S2 питающее напряжение снимается со всех реле. Они обесточиваются, подготавливая автомат к приходу следующего посетителя. Для защиты объекта от вторжения посторонних лиц, не знающих шифра, в принципиальную схему включено дополнительное электромагнитное реле К4. Его обмотка соединена с вилками контактов ХЗ, Х9, Х13, Х15, которые соединены со свободными контактами. И только стоит нажать на одну из этих кнопок, как реле К4 сработает и разомкнет контакты К4.1 и цепь питания реле. Теперь, если посторонним лицом были случайно правильно набраны одна или две цифры кода, они сбросятся, и придется набирать весь шифр снова, с самого начала. Причем одновременно со сбросом набранных цифр прозвенит звонок ВА1, питание на который подается через контакты К4.2 при срабатывании реле К4. При изготовлении релейного автомата использованы следующие комплектующие ЭРИ и ЭРЭ: выпрямительные диоды VD1— VD4 типа КД105Б; электромагнитные реле К1—КЗ типа РЭС-9, РСМ, РВМ-2С-110; самодельный или покупной сетевой понижающий трансформатор питания Т1 типа ШЛМ; конденсаторы С1 типа МБМ-II-750В-0.05 мкФ, С2 — МБМ-II-750В-0,05 мкФ, СЗ — К50-3-50В-100 мкФ; предохранители F1. F2 типа ПМ-1-0,5 А; электрические соединители X1 типа «вилка», Х2—Х15 типа КМЗ-1; светодиод HL1 типа АЛ307В; диод VD5 типа Д223; резистор R1 типа МЛТ-0,25-2,4 кОм; переключатели S1 двухполюсный типа ТП2-1 или П2Т-1-1, S2 — КМ1-1, S3— S9 — КП-1 с одним постоянно разомкнутым контактом; электромагнит ЭМ1 самодельной конструкции или покупной с напряжением питания 220 В; звонок электрический ВА1 покупной. Конструктивно релейный автомат состоит из нескольких самостоятельных сборочных единиц: шифровальной и дешифровальной сборки, в которой устанавливаются малогабаритные приборные контакты и перемычки; выпрямительного устройства с электромагнитными реле; электромагнита в качестве ИМ и замка с защелкой; кнопочной коробки; электрического звонка и сигнальной лампы. Соединения всех узлов и сборок между собой рекомендуется осуществлять с помощью электрических соединителей.


Многие детали конструкции можно изготовить в домашней мастерской (особенно те, которые входят в механический замок). Сетевой трансформатор, выпрямительное устройство и электромагнитные реле монтируются в пластмассовой или металлической коробке подходящих размеров, которая устанавливается в охраняемом помещении недалеко от входной двери. На передней панели корпуса коробки укрепляются гнезда или приборные клеммы. На вилках, подключенных проводниками к электромагнитным реле К1—КЗ, необходимо написать номера этих реле, что позволит быстро и безошибочно устанавливать ежедневный шифр из трех знаков. Остальные вилки от реле К4 не обозначаются, так как они вставляются в свободные гнезда. Для монтажа подходят любые электромагнитные реле, рассчитанные на 24 В и имеющие нормально замкнутые и нормально разомкнутые контакты. В качестве выпрямительных диодов можно применить выпрямительные диоды типа Д202—Д205. Электромагнит вместе с пружинным механическим замком устанавливается на входной двери. Замок дорабатывается в следующем порядке. Необходимо сначала снять крышку и вынуть подвижную часть замка. На его направляющих просверливаются два отверстия диаметром по 2 мм, в которые вставляются стальные проволочные тяги. На боковой поверхности замка просверливаются тоже два отверстия диаметром до 4 мм, через которые пропускаются эти проволочные тяги. Замок вновь собирается, крышка возвращается на место. Устанавливая замок и электромагнит на место, надо обратить внимание на длину рычага, входящего в замок от открывающегося ключом механизма. Длина проволоки определяется по месту. В релейном автомате может быть применен соленоид, изображенный на рис.2.12. Условно в состав конструкции соленоида входят неподвижный и жестко укрепленный в

Рис. 2.12. Конструкция соленоида. задней части катушки соленоида дополнительный сердечник 1; диэлектрический каркас катушки 2 с обмоточным проводом 3 марки ПЭЛ, ПЭВ-1 или ПЭВ-2; к вспомогательному сердечнику 1 прикреплена(приклеена)тонкая шайба из картона или бумаги 4; провод катушки сверху закрыт изоляционной лентой 5 или плотным диэлектрическим кожухом; сердечник соленоида 6, который так же, как и вспомогательный сердечник, изготавливается из мягкого железа (электротехнической стали марок 3311, 3312, 3313).


На катушку соленоида надо намотать рядовой намоткой 4500 витков обмоточного провода марки ПЭВ-1 диаметром 0,31 мм. Дополнительные детали конструкции соленоида необходимо выполнить при его установке вместе с замком на входной двери по эскизному рис. 2.13, где 1 — соленоид; 2 — переходная соединительная втулка; 3 — стальная проволочная тяга (2 шт); 4 — ригельный замок; 5 — входная дверь. Электрическое соединение всех узлов релейного автомата осуществляется многожильным кабелем в электропрочной изоляции. В местах перегибов монтажных проводов, например между дверью и стеной, на кабель надеваются мягкие резиновые трубки и оставляется некоторый запас кабеля. Это предохранит его от перетирания при частом открывании входных дверей. Дверную блокировочную кнопку-переключатель тоже можно изготовить самостоятельно из двух латунных пластинок, первая из которых укрепляется на подвижной части двери, а вторая — на косяке или коробке двери.

Рис. 2.13. Установка соленоида и механического замка на входной двери охраняемого объекта. Правильно собранная электромонтажная схема релейного автомата начинает работать сразу же после включения электропитания. Радиолюбитель, выполняя различные электромонтажные работы, должен знать основные правила безопасности, позволяющие сделать минимальным воздействие неблагоприятных факторов в отношении не только себя, но и окружающих. При работе с электричеством необходимо любые действия производить вдали от водопроводных труб, радиаторов парового отопления и ванн, исключить даже случайное прикосновение к ним; заменять детали при ремонте следует только после отключения блоков релейного автомата от сети, обязательно вынимая вилку со шнуром питания из сетевой розетки; после отключения источника электропитания обязательно разрядить конденсатор СЗ; нельзя проверять исправность плавких предохранителей в устройстве путем замыкания их. Основные электрические параметры и технические характеристики простого релейного охранного автомата Номинальное напряжение питающей сети неременного тока, В ....................... .220 или 127 Номинальная частота питающей сети переменного тока, Гц ............................ .50 Номинальное напряжение автономного источника питания постоянного тока, В .............. .24 Номинальное напряжение питания электромагнитных реле, В ......................... .24 Коэффициент нелинейных искажений питающей сети переменного тока, %, не более ......... .10 Пределы изменения напряжения питающей сети переменного тока, В .................... .187...242 или 110... 140 Пределы изменения напряжения автономного источника питания, В ................... 20...25 Пределы изменения частоты питающей сети переменного тока, Гц ................... 49...51 Напряжение на выводах вторичных обмоток сетевою трансформатора питания Т1, В: 11 и 12, 13 и 14, 15 и 16, 17 и 18 ......... 10 21 и 22, 23 и 24 ..................... 2,5 Количество одновременно охраняемых объектов, шт . . 1 Количество цифр в шифре, шт .............. 3 Количество вариантов комбинации релейного автомата при наборе шифра, шт ............ 1000 Максимальная мощность релейного автомата при срабатывании электромагнита, Вт, не более .... 100 Количество разрядов кодовой комбинации ....... 7 Срок службы, ч, не менее .................. 10 000 Сопротивление изоляции реле в нормальных условиях эксплуатации, МОм, не менее .......... 20 Время отпускания реле, мс, не более .......... 7 Вероятность безотказной работы автомата при риске заказчика в=0,92, не менее .......... 0,98 Задержка времени срабатывания релейного автомата, с, не более ..................... 0,5 Ток, потребляемый устройством в режиме холостого хода, мА, не более .................. 20 Минимальная мощность электромагнита, Вт ..... 60 Условия эксплуатации: температура окружающей среды, °С .........—25. ..4-45 относительная влажность воздуха при температуре 25 °С, %, не более ................. 92 атмосферное давление, мм рт. ст. ........... 200...900

Рис. 2.11.Принципиальная схема простого релейного охранного автомата.